SLDP: example 1
This tutorial was generated using Literate.jl. Download the source as a .jl
file. Download the source as a .ipynb
file.
This example is derived from Section 4.2 of the paper: Ahmed, S., Cabral, F. G., & da Costa, B. F. P. (2019). Stochastic Lipschitz Dynamic Programming. Optimization Online. PDF
using SDDP, HiGHS, Test
function sldp_example_one()
model = SDDP.LinearPolicyGraph(;
stages = 8,
lower_bound = 0.0,
optimizer = HiGHS.Optimizer,
) do sp, t
@variable(sp, x, SDDP.State, initial_value = 2.0)
@variables(sp, begin
x⁺ >= 0
x⁻ >= 0
0 <= u <= 1, Bin
ω
end)
@stageobjective(sp, 0.9^(t - 1) * (x⁺ + x⁻))
@constraints(sp, begin
x.out == x.in + 2 * u - 1 + ω
x⁺ >= x.out
x⁻ >= -x.out
end)
points = [
-0.3089653673606697,
-0.2718277412744214,
-0.09611178608243474,
0.24645863921577763,
0.5204224537256875,
]
return SDDP.parameterize(φ -> JuMP.fix(ω, φ), sp, [points; -points])
end
SDDP.train(model; log_frequency = 10)
@test SDDP.calculate_bound(model) <= 1.1675
return
end
sldp_example_one()
-------------------------------------------------------------------
SDDP.jl (c) Oscar Dowson and contributors, 2017-24
-------------------------------------------------------------------
problem
nodes : 8
state variables : 1
scenarios : 1.00000e+08
existing cuts : false
options
solver : serial mode
risk measure : SDDP.Expectation()
sampling scheme : SDDP.InSampleMonteCarlo
subproblem structure
VariableRef : [7, 7]
AffExpr in MOI.EqualTo{Float64} : [1, 1]
AffExpr in MOI.GreaterThan{Float64} : [2, 2]
VariableRef in MOI.GreaterThan{Float64} : [4, 4]
VariableRef in MOI.LessThan{Float64} : [1, 2]
VariableRef in MOI.ZeroOne : [1, 1]
numerical stability report
matrix range [1e+00, 2e+00]
objective range [5e-01, 1e+00]
bounds range [1e+00, 1e+00]
rhs range [1e+00, 1e+00]
-------------------------------------------------------------------
iteration simulation bound time (s) solves pid
-------------------------------------------------------------------
10 3.785215e+00 1.166861e+00 3.846412e-01 1680 1
20 2.812407e+00 1.167299e+00 4.831080e-01 2560 1
30 2.828561e+00 1.167299e+00 8.836591e-01 4240 1
40 3.470837e+00 1.167299e+00 9.871671e-01 5120 1
50 2.832678e+00 1.167299e+00 1.375145e+00 6800 1
60 3.234686e+00 1.167299e+00 1.479508e+00 7680 1
70 3.192636e+00 1.167299e+00 1.876036e+00 9360 1
80 2.722614e+00 1.167299e+00 1.990646e+00 10240 1
-------------------------------------------------------------------
status : simulation_stopping
total time (s) : 1.990646e+00
total solves : 10240
best bound : 1.167299e+00
simulation ci : 3.241472e+00 ± 9.570211e-02
numeric issues : 0
-------------------------------------------------------------------