StructDualDynProg: Problem 5.2, 3 stages
This example comes from StochasticDualDynamicProgramming.jl.
using SDDP, HiGHS, Test
function test_prob52_3stages()
model = SDDP.LinearPolicyGraph(
stages = 3,
lower_bound = 0.0,
optimizer = HiGHS.Optimizer,
) do sp, t
n = 4
m = 3
ic = [16, 5, 32, 2]
C = [25, 80, 6.5, 160]
T = [8760, 7000, 1500] / 8760
D2 = [diff([0, 3919, 7329, 10315]) diff([0, 7086, 9004, 11169])]
p2 = [0.9, 0.1]
@variable(sp, x[i = 1:n] >= 0, SDDP.State, initial_value = 0.0)
@variables(sp, begin
y[1:n, 1:m] >= 0
v[1:n] >= 0
penalty >= 0
ξ[j = 1:m]
end)
@constraints(sp, begin
[i = 1:n], x[i].out == x[i].in + v[i]
[i = 1:n], sum(y[i, :]) <= x[i].in
[j = 1:m], sum(y[:, j]) + penalty >= ξ[j]
end)
@stageobjective(sp, ic'v + C' * y * T + 1e5 * penalty)
if t != 1 # no uncertainty in first stage
SDDP.parameterize(sp, 1:size(D2, 2), p2) do ω
for j in 1:m
JuMP.fix(ξ[j], D2[j, ω])
end
end
end
if t == 3
@constraint(sp, sum(v) == 0)
end
end
det = SDDP.deterministic_equivalent(model, HiGHS.Optimizer)
set_silent(det)
JuMP.optimize!(det)
@test JuMP.objective_value(det) ≈ 406712.49 atol = 0.1
SDDP.train(model, iteration_limit = 30, log_frequency = 10)
@test SDDP.calculate_bound(model) ≈ 406712.49 atol = 0.1
return
end
test_prob52_3stages()------------------------------------------------------------------------------
SDDP.jl (c) Oscar Dowson and SDDP.jl contributors, 2017-23
Problem
Nodes : 3
State variables : 4
Scenarios : 4.00000e+00
Existing cuts : false
Subproblem structure : (min, max)
Variables : (29, 29)
VariableRef in MOI.EqualTo{Float64} : (3, 3)
VariableRef in MOI.LessThan{Float64} : (1, 1)
AffExpr in MOI.LessThan{Float64} : (4, 4)
AffExpr in MOI.GreaterThan{Float64} : (3, 3)
AffExpr in MOI.EqualTo{Float64} : (4, 5)
VariableRef in MOI.GreaterThan{Float64} : (22, 22)
Options
Solver : serial mode
Risk measure : SDDP.Expectation()
Sampling scheme : SDDP.InSampleMonteCarlo
Numerical stability report
Non-zero Matrix range [1e+00, 1e+00]
Non-zero Objective range [1e+00, 1e+05]
Non-zero Bounds range [0e+00, 0e+00]
Non-zero RHS range [0e+00, 0e+00]
No problems detected
Iteration Simulation Bound Time (s) Proc. ID # Solves
10 5.099074e+05 3.509666e+05 1.369500e-02 1 80
20 4.055335e+05 4.054833e+05 2.611184e-02 1 160
30 4.497721e+05 4.067125e+05 4.102087e-02 1 240
Terminating training
Status : iteration_limit
Total time (s) : 4.102087e-02
Total solves : 240
Best bound : 4.067125e+05
Simulation CI : 4.200274e+07 ± 5.673929e+07
------------------------------------------------------------------------------This page was generated using Literate.jl.