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Abstract

Pastoral dairy farmers continually make sequential decisions in the face of long-term environ-
mental uncertainty and price volatility. Decisions made early in the season, such as the number
of cows to farm per hectare, can have significant effects later in the season if, for example, the
farmer is forced to import additional feed to meet the cows’ energy demands during a drought.

This thesis analyses the problems faced by pastoral dairy farmers through the lens of mul-
tistage stochastic optimisation. The thesis is structured in two distinct parts that are approxi-
mately equal in content.

The first part of this thesis, Multistage Stochastic Optimisation, addresses the theory and
computation of multistage stochastic optimisation. We focus on the stochastic dual dynamic
programming algorithm as a solution technique for multistage stochastic optimisation models.
There are three main chapters in Part I.

First, we conduct a literature review of the current state-of-the-art stochastic dual dynamic
programming implementation. We also discuss our experience of a range of numerical is-
sues related to stochastic dual dynamic programming. Second, we describe SDDP.jl, a soft-
ware package we have developed for solving multistage stochastic optimisation problems using
stochastic dual dynamic programming. Finally, we describe an extension to the stochastic dual
dynamic programming algorithm to enable the solution of problems with stagewise-dependent
objective uncertainty.

The second part of the thesis, Applications in the Dairy Industry, applies the theory and tech-
niques developed in the first part of the thesis to the problems faced by pastoral dairy farmers
in New Zealand.

We develop two models: MOO – the Milk Output Optimiser, and POWDER – the milk Pro-
duction Optimiser incorporating Weather Dynamics and Economic Risk. We use these models
to analyse the decision-making of a farmer in the Bay of Plenty region of New Zealand in a
variety of circumstances. Finally, we introduce forward contracting for milk and show how a
risk-averse farmer can use forward contracts to effectively manage their downside risk.
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I never saw a Purple Cow,

I never hope to see one;

but I can tell you, anyhow,

I’d rather see than be one!

– Gelett Burgess
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Preface

This thesis is about decision-making under uncertainty. More specifically, it is about the prob-
lem of making a sequence of decisions in time when the future is unknown. These multistage

stochastic optimisation problems arise in a variety of settings, many of which will be familiar
to the reader. In this thesis, we explore examples in which factories produce products without
knowing exact future demand; hydroelectric generators manage reservoir levels without know-
ing future inflows; and dairy farmers manage their herd without knowing future grass growth.

For several reasons, including the high-dimensionality of real-world problems and the ne-
cessity of making decisions before we know what information will arrive in the future, multi-
stage stochastic optimisation problems are difficult to solve [165]. Even the problem of com-
paring two solutions is difficult. Should we compare the average or the worst-case outcome?

However, despite the difficulty of solving these problems to optimality, human decision
makers can, and do, make good decisions based on years of experience and intuition. The
dairy farmer that we meet in Part II of this thesis continually makes sequential decisions in the
face of short- and long-term environmental uncertainty and price volatility. As we shall see,
independently of our model, the farmer reduced the number of cows on their farm in line with
our optimisation model’s recommendation. To quote Kellogg [118], writing about oil drilling
companies:

Given the small size of many ... firms ..., it seems unlikely that they are formally
solving Bellman equations. However, they may have developed decision heuristics
that roughly mimic an optimal decision-making process. Moreover, the firms have a
strong financial incentive to get their decision-making at least approximately right.

Although the farmer’s decision-making was approximately right regarding the question of
reducing the number of cows, the farmer is not infallible. The pioneers of behavioural eco-
nomics, Tversky and Kahneman, wrote that:

Most important decisions [people] make are governed by beliefs concerning the
likelihood of unique events. The “true” probabilities of such events are elusive,
since they cannot be assessed objectively. The subjective probabilities that are as-
signed to unique events by knowledgeable and consistent people have been ac-
cepted as all that can be said about the likelihood of such events.

1



2 Preface

Although the “true” probability of a unique event is unknowable, the reliance on
heuristics such as availability or representativeness, biases subjective probabilities
in knowable ways. (Tversky and Kahneman [198])

Our farmer is a good demonstration of this biased subjectivity. The majority (84%) of dairy
farmers in New Zealand supply milk to Fonterra, a large milk processing co-operative [197].
However, they are not paid for their milk on delivery. Instead, at the end of each season (one
year), they are back-paid an end-of-season milk price for each kilogram of milk supplied during
the preceding season. This end-of-season milk price is calculated from a series of international
auctions that occur during the year. Therefore, at the start of the season, there is some uncer-
tainty surrounding the end-of-season milk price, since the auctions have not yet occurred. To
help guide the farmers in their decision-making, Fonterra releases a sequence of forecast milk
prices during the season. As the season progresses, this sequence of forecast milk prices con-
verges towards the end-of-season milk price. A question naturally arises regarding the accuracy
of the forecast milk price at the start of the season, compared with the end-of-season milk price.
In Table 1, we give the initial forecast milk price issued by Fonterra, the end-of-season milk
price, and the difference, for the last eight complete seasons in New Zealand.

Season 09/10 10/11 11/12 12/13 13/14 14/15 15/16 16/17
Initial 4.10 6.60 6.75 5.50 7.00 7.00 5.25 4.25

End-of-Season 6.10 7.60 6.08 5.84 8.40 4.40 3.90 6.12
Difference +2.00 +1.00 −0.67 +0.34 +1.40 −2.60 −1.35 +1.87

Table 1: Comparison of Fonterra’s initial milk price forecast against the end-of-season milk
price for the last eight complete seasons. All units are NZ$/kg. Note that a season runs from
June to the following May, so the seasons overlap across years (e.g. 09/10 refers to the 2009/10
season). Data sourced from Fonterra [76].

In an interview, we asked the farmer if the end-of-season milk price was more likely, or less
likely, to be greater than the initial forecast milk price. He replied that the end-of-season milk
price was more likely to be greater than the initial forecast milk price because “Fonterra want
to give farmers good news during the year.” Looking at the historical record over the last eight
seasons (i.e. 2009/10 – 2016/17), there is a 5–3 split in favour of seasons in which the end-of-
season milk price was greater than the initial forecast milk price. However, there is no evidence
that this result is statistically significant (p=0.52). Therefore, despite the intention of Fonterra
to release a sequence of forecast milk prices to help guide farmers’ decision-making, biases on
the part of the individual farmers may lead them to misinterpret the available information and
make sub-optimal decisions.

Moreover, the decision by our farmer to reduce the number of cows was only made after
several years of trial and error. This lag in decision-making, where the human must learn from
experience, provides an opportunity for optimisation and modelling to improve their decision-
making.



Preface 3

In our view, multistage stochastic optimisation offers a structured way to remove the bias of
the decision maker (although the model itself may introduce alternative biases). It also tightens
the feedback loop between action and experience, and it allows the decision maker to be proac-
tive rather than reactive. Dantzig, one of the fathers of mathematical programming, remarked
in 1991 that (our emphasis added):

In retrospect it is interesting to note that the original problem that started my re-
search is still outstanding – namely the problem of planning or scheduling dynam-
ically over time, particularly planning dynamically under uncertainty. If such a
problem could be successfully solved it could eventually through better planning
contribute to the well-being and stability of the world. (Dantzig [54])

This thesis is structured in two distinct parts that are approximately equal in content. The
first, Multistage Stochastic Optimisation, addresses the theory and computation of multistage
stochastic optimisation. The second, Applications in the Dairy Industry, applies the theory and
techniques developed in the first part of the thesis to the problems faced by pastoral dairy farm-
ers in New Zealand. It is intended that each part is more or less self-contained, although readers
unfamiliar with stochastic optimisation will benefit from reading Part I before beginning Part II.
Within each part, the chapters should be read sequentially. Since the two parts are distinct, they
each begin with an introductory chapter. For example, an introduction and literature review of
the dairy industry can be found in Chapter 6 instead of in this chapter. In addition, each part
finishes with a conclusion chapter that summarises the main results discussed in that part.

Thesis outline

The thesis is structured as follows.

Part I Chapters 1 – 5 form Part I of this thesis. In Chapter 1, we introduce the reader to
multistage stochastic optimisation and outline the notation and vocabulary used in this thesis.
The main contribution is the idea of a policy graph as a structured way of formulating a class of
multistage stochastic optimisation problems. One way of solving such problems is the stochas-

tic dual dynamic programming (SDDP) algorithm, which is the focus of Chapter 2. In that
chapter, we describe the algorithm and survey the literature regarding the current state-of-the-
art implementations. In Chapter 3, we introduce SDDP.jl, a Julia library we have developed
to solve multistage stochastic optimisation problems using SDDP. This library forms the main
contribution of Part I of this thesis. In Chapter 4, we introduce and analyse an extension to
the SDDP algorithm to solve a specific class of multistage stochastic optimisation problems.
Finally, in Chapter 5, we conclude with a summary of the main results and contributions of Part
I and some avenues of future research.



4 Preface

Part II The next five chapters, Chapters 6 – 10, form Part II of this thesis. Chapter 6 is
a short chapter that contains an introduction to the New Zealand dairy industry and a review
of multistage stochastic optimisation in agriculture. The next three chapters all concern the
formulation and application of multistage stochastic optimisation models to the New Zealand
dairy industry. Since these chapters require some understanding of the New Zealand dairy
industry, we delay our introduction of them to the end of Chapter 6. We conclude Part II in
Chapter 10 with a summary of the main results and contributions of Part II and some avenues
of future research.

We conclude the thesis with a short summary that integrates both parts.



Part I

Multistage Stochastic Optimisation
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Chapter 1

Introduction

The following chapters in Part I of this thesis deal with the theory and computation of multi-
stage stochastic optimisation. Optimisation under uncertainty has a long history dating back
to Dantzig [55]. However, unlike the standardisation that has taken place in deterministic op-
timisation (where terms like decision variable, constraint, and objective function are widely
accepted), the stochastic optimisation community has fragmented into different communities,
each of which speaks a different arcane language [166]. Therefore, it is necessary to clearly
define the terminology and notation that we shall be using in this thesis. Readers should be
aware that compared with other approaches in the literature, there are some subtle (and some
large) differences in our approach. We use the language of stochastic optimal control, with
terms like stage, state, and control. We do not view the world as a scenario tree, nor do we
explicitly express the uncertainty in terms of a filtration on some probability space. Instead, we
follow an approach that is heavily inspired by Powell [166]: we decompose the problem into
small atomic pieces, clearly define each piece, and then define how the pieces fit together. We
begin with some terminology.

1.1 Terminology

First, let us define the stage in multistage.

Definition 1. A stage is a discrete interval of time in which the agent chooses a decision and
any uncertainty is revealed.

Therefore, multistage refers to a problem that can be decomposed into a sequence of stages.
This requires the assumption that time can be discretised. Second, the stochastic component
of multistage stochastic optimisation refers to problems with uncertainty. In this thesis, we
differentiate between two types of uncertainty; the first of which we term a noise. (We shall
describe the second type in the next section, but it relates to how the problem transitions between
stages.)

7



8 Chapter 1. Introduction

Definition 2. A noise is a stagewise-independent random variable in stage t.

In stage t, we denote a single observation of the noise with the lowercase ωt, and the sample
space from which it is drawn by the uppercase Ωt. Ωt can be continuous or discrete, although
in this thesis we only consider the discrete case. Furthermore, we use the term stagewise-

independent to refer to the fact that the noise in stage t is sampled independently of the noise
terms in stages 1, 2, . . . , t− 1, t+ 1, t+ 2, . . . , T .

Next we define a state, taking the definition from Powell [167].

Definition 3. A state is the minimally dimensioned function of history that captures all the
information we need to model a system from some point in time onward.

Expressed a different way, a state is the smallest piece of information that is necessary to
pass between stage t and t + 1 so that the optimal decision-making in stage t + 1 onward can
be made independently from the decisions that were made in stages 1 to t. Each dimension of
the state is represented by a state variable. State variables can be continuous or discrete.

We denote the state variable at the start of stage t by the lowercase xt. We refer to xt

as the incoming state variable. Then, during the stage: the agent chooses a control (action);
a realisation of the noise is observed; and the state transitions to x′t at the end of the stage
according to the transition function. We refer to x′t as the outgoing state variable. We now
define a control and the transition function.

Definition 4. A control variable is an action or decision taken (explicitly or implicitly) by the
agent during a stage.

Control variables in stage t can be continuous or discrete. In this thesis, we denote control
variables with the lowercase ut. Such controls must be feasible for the agent to implement, and
therefore they belong to a set that depends on the incoming state variable and observation of the
random noise; this is denoted ut ∈ Ut(xt, ωt).

Definition 5. The transition function is a mapping of the incoming state xt to the outgoing state
x′t, given the control ut and the noise ωt.

We denote the transition function as x′t = Tt(xt, ut, ωt). This function can be of any form.
As a result of the state transitioning, a cost is incurred.

Definition 6. The stage-objective is the cost (if minimising, otherwise value) accrued in stage
t as a consequence of taking the control ut, given the incoming state xt and realisation of the
noise ωt.

This is denoted Ct(xt, ut, ωt). All that remains is to define how the agent chooses a control.
We use the terminology of Puterman [170] and call this a decision-rule.

Definition 7. A decision-rule, πt, for stage t, is a mapping of the incoming state variable xt and
observation of the noise ωt, to a control ut.
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This is denoted ut = πt(xt, ωt). In cases where the decision-rule does not depend upon the
noise, we denote the decision-rule as πt(xt). We refer to a set of decision-rules, one for each
stage t, as a policy.

Definition 8. A policy is a set of decision-rules π = {πt : t = 1, 2, . . . , T}, containing one
element for each stage t.

Now that we have defined some basic terminology, we can construct the atomic building
block of multistage stochastic optimisation, which we refer to as a node.

Definition 9. A node is a collection of the following components: incoming and outgoing
state variables, a noise, some control variables, a transition function, a stage-objective, and a
decision-rule.

In this thesis, we discriminate between two types of node:

(1) A Hazard-Decision node – also called Wait-and-See [31]; and
(2) A Decision-Hazard node – also called Here-and-Now [31].

We now define each type of node in turn.

Definition 10. In a Hazard-Decision node, the agent chooses a control ut after observing a
realisation of the noise ωt ∈ Ωt according to the decision-rule πt(xt, ωt). The state transitions
from xt to x′t according to the transition function Tt(xt, ut, ωt). The decision-rule respects the
set of admissible controls so that ut ∈ Ut(xt, ωt). In addition, a cost Ct(xt, ut, ωt) is incurred.
A schematic of this is shown in Figure 1.1.

ut = πt(xt, ωt)
x′t = Tt(xt, ut, ωt)

Ωt

Ct(xt, ut, ωt)

xt x′t

ωt

Figure 1.1: Schematic of a Hazard-Decision node.

Definition 11. In a Decision-Hazard node, the agent chooses a control ut before observing a
realisation of the noise ωt ∈ Ωt according to the decision-rule πt(xt). The state transitions
from xt to x′t according to the transition function Tt(xt, ut, ωt). The decision-rule respects the
set of admissible controls so that ut ∈ Ut(xt). In addition, a cost Ct(xt, ut, ωt) is incurred. A
schematic of this is shown in Figure 1.2.

When no uncertainty is realised in the node (i.e. |Ωt| = 1), the Decision-Hazard node be-
comes identical to the Hazard-Decision node. We denote this deterministic node by dropping
the wavy line coming into the box depicting the node and dropping the ωt function arguments.
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ut = πt(xt)
x′t = Tt(xt, ut, ωt)

Ωt

Ct(xt, ut, ωt)

xt x′t

ωt

Figure 1.2: Schematic of a Decision-Hazard node.

Furthermore, readers should note that the two types of nodes are not immutable. Instead, they
are a modelling choice. For example, it is possible to transform a Decision-Hazard node into
a deterministic node followed by a Hazard-Decision node with an expanded state-space. An
example of this is shown in Figure 1.3. Note that we pass xt and ut between the nodes, instead
of just xt.

ut = πt(xt) x′t = Tt(xt, ut, ωt)

Ωt ωt

Ct(xt, ut, ωt)

xt xt, ut x′t

Figure 1.3: A Decision-Hazard node expanded into a deterministic node and a Hazard-Decision
node.

The definitions above should be familiar to most readers versed in stochastic optimisation.
However, notably excluded is a description of how the nodes are linked together. Typically,
nodes are linked together as a linear sequence so that x′t = xt+1. In this case, we use the
terms node and stage interchangeably, and we use xt and xt+1 instead of xt and x′t. Implicit
within this formulation is the idea that ut cannot depend upon events in stages t+1 onward (i.e.
nonanticipativity), since the decision-rule πt depends only upon the incoming state variable xt
and the stagewise independent random variable ωt.

In contrast to the linear case, it is possible to link nodes together in more complicated struc-
tures (e.g. such as the Markovian lattice used by Philpott and de Matos [161]). In this case,
there can be many nodes corresponding to each stage (in time). Therefore, we cannot use the
terms node and stage interchangeably. To clearly signal the difference, we will use the sub-
script i instead of t when referring to the components within each node. In the next section, we
generalise this idea of linking nodes with what we term a policy graph.
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1.2 Policy graphs

In the previous section, we defined two types of node: Hazard-Decision and Decision-Hazard.
In this section, we describe how to link nodes together. Thus, we first need to define the initial
conditions of the problem.

Definition 12. The root node is the current point-of-view of the agent in the decision-making
process and stores an initial value xR for the state variable.

It is important to note that the root node is neither a Hazard-Decision nor a Decision-Hazard
node; it is just a convenient object to represent the initial point in the sequential decision-making
process.

We now have all the terminology necessary to define the object that specifies the structure
of how the nodes link together. We call the structure a policy graph.

Definition 13. A policy graph G = (R,N , E ,Φ) is defined by a tuple containing the root node
R, along with the set of nodes N and directed edges E . Φ is an |N + 1| by |N | matrix of the
transition probabilities between nodes, with entries φi,j , such that if there exists an edge (i, j)

in E for two nodes i ∈ N ∪ {R} and j ∈ N , then xj = x′i with probability φi,j ≥ 0. If no edge
exists, then φi,j = 0.

This definition encompasses the second type of uncertainty alluded to in the previous sec-
tion: the probability of transitioning between nodes in the policy graph. (Recall the first type
of uncertainty was the stagewise-independent noise within a node.) Before we elaborate on the
transitions between nodes, it is useful to define the children of a node and the notion of two
nodes being connected.

Definition 14. The children of node i is the set i+ = {j : φi,j > 0}.

Definition 15. Node i is connected to node j if j ∈ i+.

In the remainder of this section we show, by graphical example, the various features of a
policy graph. The graphical representation of each policy graph has a single circle that repre-
sents the root node. The square boxes represent Hazard-Decision or Decision-Hazard nodes.
For simplicity, we drop the annotations used in Figures 1.1 and 1.2, since the node type can be
inferred based on the presence (or absence) of a wavy arc representing the noise.

We note that this chapter is not the first to advocate for a graphical representation of the
decision-making process. The System Dynamics community have developed a rich graphical
framework for conveying dynamical systems [194]. However, the System Dynamics approach
focuses on the (causal) relationships between the states (stocks) and controls (flows) and can-
not express how uncertainty is revealed through the decision-making process. There are also
well-known tools in the Operations Research community that use similar symbols such as de-
cision trees, scenario trees, and flowcharts. (See Powell [165] for examples.) Our approach is
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different in that it operates at a level of abstraction above the System Dynamics framework (for
example, each node can be diagrammed using System Dynamics), and that (as we shall show)
it supersedes the scenario tree approach.

Sequential Hazard-Decision problem In a sequential Hazard-Decision problem, the noise
is observed at each square node before the control is chosen. A graphical representation of
the policy graph is given in Figure 1.4. Note that the arcs can be interpreted as the flow of
information (i.e. the states) between nodes.

R B C

Figure 1.4: Two-stage Hazard-Decision problem.

The node graph is:

G = (R,N , E ,Φ) = (R, {B,C}, {(R,B), (B,C)}, {φR,B = 1, φB,C = 1}) .

We call a policy graph of this form a linear policy graph.

Definition 16. A linear policy graph is composed of a finite set of nodes, where each node is
connected to, at most, one other node.

Recall that when the policy graph is linear, we can use the terms node and stage interchange-
ably, and we denote the outgoing state variable in stage t as xt+1 instead of x′t.

A policy graph can also be thought of as a compressed scenario tree. If each Hazard-
Decision node in Figure 1.4 has two possible realisations for ωt, then the scenario tree has six
nodes. This can be described by the policy graph:

G = (R,N , E ,Φ) = (

R,

{B,C,D,E, F,G},
{(R,B), (R,C), (B,D), (B,E), (C,F ), (C,G)},
{φR,B = 0.5, φR,C = 0.5, φB,D = 0.5, φB,E = 0.5, φC,F = 0.5, φC,G = 0.5}

).

The graphical representation is shown in Figure 1.5.
The policy graphs in Figures 1.4 and 1.5 are equivalent representations of the same problem.

However, the first example contains more information than the second example since it shows
that node D is identical to node F, and node E is identical to node G. To clarify the point,
any policy graph (with a finite sample space for the noise Ω) can be expanded into a scenario
tree, but a scenario tree cannot be compressed into a linear policy graph without the additional
information of which transitions between nodes are stagewise-independent.
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R

C

B

F

G

E

D

Figure 1.5: Explicit scenario tree representation.

The benefit of the graphical representation of a policy graph is most apparent when different
types of nodes are mixed together. For example, a common problem in the literature is the two-
stage problem with recourse (Figure 1.6). In this problem, the first stage is deterministic, and
the second stage is Hazard-Decision.

Figure 1.6: Two-stage problem with recourse.

Conditional dependence

So far, we have limited the uncertainty to two types: (1) a stagewise-independent noise within
a node; and (2) probabilistic transitions between nodes. Importantly, the transition between
the nodes is sampled first, and this determines the sample space from which the stagewise-
independent noise is sampled. We now show how these two types of uncertainty can be com-
bined to produce stagewise-dependent1 noise. As a motivating example, consider a hypothetical
ice-cream seller in New Zealand. The New Zealand summer climate is dominated by the El
Niño-Southern Oscillation, an irregular, periodical climate pattern in the Pacific Ocean. It has
two extremes: El Niño and La Niña. In El Niño years, the Eastern Pacific warms relative to
average, and there is less rainfall than average in New Zealand. In La Niña years, the opposite
is true [148]. Prior to learning if the year is El Niño or La Niña, an ice-cream seller must order
a quantity of ice-cream to sell over the summer. Then, during the summer, their sales depend
upon the number of sunny days. The number of sunny days is uncertain, although there is a
higher probability of sunny days during El Niño years than La Niña.

We could model this problem by a linear, two-stage policy graph like Figure 1.6. However,
we would need to add an additional binary state variable to code whether the system was in
El Niño or La Niña. This formulation comprises one decision-rule for the first stage and one
decision-rule for the second stage.

Alternatively, we can model the problem as shown in Figure 1.7 without the need for the
additional state variable. This formulation comprises one decision-rule for the first stage (as

1We really mean nodewise-dependent, but this may confuse the matter too much.
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before), but two decision-rules for the second stage: one to use if the year is El Niño and one to
use if the year is La Niña.

El Niño

La Niña

Figure 1.7: Two-stage problem with recourse and conditional dependence.

Importantly, the realisation of the random node transition (into either El Niño or La Niña)
is exogenous to the remainder of the problem. Such a decomposition is hardly novel – indeed
it is identical to the process of decomposing the problem into stages (and thereby solving for
a decision-rule in each stage, instead of a single decision-rule that includes time as a state
variable).

If we extend this structure to a series of stages, where all the nodes in a stage t are connected
to all the nodes in the next stage t+ 1, we end up with a Markov chain structure. We call policy
graphs with this structure Markovian.

Definition 17. A Markovian policy graph is composed of a finite set of stages, where each
stage consists of a set of nodes, and all the nodes within a stage are connected to nodes within,
at most, one other stage.

An example of a Markovian policy graph is shown in Figure 1.8. The recombination of the
nodes prevents the number of leaf nodes in the expanded scenario tree from growing exponen-
tially. We refer to the different nodes within a stage as the Markov states of the stage. Note that
a linear policy graph is a Markovian policy graph with one Markov state in each stage.

Figure 1.8: A Markovian policy graph.

The scenario tree in Figure 1.5 is also a Markovian policy graph. However, there are some
structures which are neither linear nor Markovian; an example of which is shown in Figure 1.9.
In that example, the policy graph is not Markovian as the node in the first stage has one child in
the second stage and one in the third stage.

To convert the policy graph in Figure 1.9 into a Markovian policy graph, we could introduce
a new Markov state in the second stage on the lower branch. The new Markov state would be
deterministic, have no control variables, and have a stage-objective Ci(xi) = 0. The transition
function would map the incoming state variables directly to the outgoing state variables so that
xi = x′i.
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Figure 1.9: A non-Markovian policy graph.

Non-Markovian policy graphs demonstrate the need to distinguish between a node and a
stage. However, once this distinction is made, we can easily express problems with random
transitions between stages (i.e. if time is not sequential) such as those considered by Guigues
[96]. An example is shown in Figure 1.10.

Figure 1.10: A policy graph with random transitions between stages.

We are almost ready to describe the optimisation problem of finding the optimal decision-
rule for each node. However, before we proceed, it is necessary to introduce the concept of
risk.

1.3 Risk

At every node in the policy graph of a multistage stochastic optimisation problem, the agent
needs some way of aggregating the future cost of a control across the future uncertainty. They
do so via a risk measure.

Definition 18. A risk measure F is a function that maps a random variable to a real number.

To elaborate upon this definition, we draw heavily from Shapiro et al. [190, Ch. 6.3].
In this thesis, we restrict our attention to random variables with a finite sample space Ω :=

{z1, z2, . . . , zK} equipped with a sigma algebra of all subsets of Ω and respective (strictly posi-
tive) probabilities {p1, p2, . . . , pK}. This greatly simplifies the analysis of risk and is a required
assumption for our proposed solution technique (stochastic dual dynamic programming, which
we discuss in the next chapter). We denote the random variable with the uppercase Z.

In this thesis, we shall use the following risk measures: Expectation (E[Z]), Average Value-
at-Risk (AV@R1−β[Z]), and Worst-case (max[Z]). We visualise these risk measures in Figure
1.11 given the probability density function of Z. We assume that we are minimising; thus,
smaller values of Z are better.

The Expectation and Worst-case risk measures are self-explanatory. However, the Average
Value-at-Risk is worth explaining for readers unfamiliar with it.
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E[Z]

AV@R1−β[Z]

Area = β

max[Z]
Z

pd
f(
Z

)

Figure 1.11: Graphical representation of the risk measures used in this thesis.

Definition 19. According to Rockafellar and Uryasev [181], the Average Value-at-Risk2 at the
β quantile (AV@R1−β) is:

AV@R1−β[Z] = inf
ζ

{
ζ +

1

β

K∑
k=1

pk(zk − ζ)+

}
,

where (x)+ = max{0, x}.

As a simple approximation, the AV@R1−β can be thought of as the expectation of the worst
β fraction of outcomes. However, if the distribution of the random variable is not continuous
(e.g. the distribution is discrete), the interpretation is subtler since we may have to split a discrete
probability atom. (See Rockafellar and Uryasev [181] for more details.) Also note that when
β = 1, AV@R1−β[Z] = E[Z], and limβ→0AV@R1−β[Z] = max[Z].

We use these risk measures (Expectation, AV@R, and Worst-case) because they are coher-

ent according to the following axioms.

Definition 20. A coherent risk measure is a risk measure F that satisfies the axioms of Artzner
et al. [6]. For two discrete random variables Z1 and Z2, each with drawn from a sample space
with K elements, the axioms are:

• Monotonicity: If Z1 ≤ Z2, then F[Z1] ≤ F[Z2].

• Sub-additivity: For Z1, Z2, then F[Z1 + Z2] ≤ F[Z1] + F[Z2].

• Positive homogeneity: If λ ≥ 0 then F[λZ] = λF[Z].

• Translation equivariance: If a ∈ R then F[Z + a] = F[Z] + a.

Positive homogeneity and sub-additivity give:

• Convexity: For λ ∈ [0, 1], F[λZ1 + (1− λ)Z2] ≤ λF[Z1] + (1− λ)F[Z2].
2Rockafellar and Uryasev [181] actually call this the Conditional Value-at-Risk (CV@R); however, we follow

Shapiro et al. [190] and refer to it as AV@R.
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We can also define coherent risk measures in terms of risk sets [6, 190]. That is, a coherent
risk measure F has a dual representation that can be viewed as taking the expectation of the
random variable with respect to the worst probability distribution within some set A of possible
distributions:

F[Z] = sup
ξ∈A

E ξ[Z] = sup
ξ∈A

K∑
k=1

ξkzk, (1.1)

where A is a convex subset of:

P =

{
ξ ∈ RK :

K∑
k=1

ξk = 1, ξ ≥ 0

}
.

Following Philpott et al. [160], we shall refer to the probability distribution ξ that attains the
supremum as the changed probability distribution.

Definition 21. Given an original probability distribution {p1, p2, . . . , pK} and a coherent risk
measure F, there exists a changed probability distribution {ξ1, ξ2, . . . , ξK} such that F[Z] =

Eξ[Z].

The three risk measures described above (Expectation, AV@R, and Worst-case) can be ex-
pressed in terms of the set A as follows:

• Expectation: If A is a singleton, containing only the original probability distribution,
then the risk measure F is equivalent to the expectation operator.

• AV@R: If A =
{
ξ ∈ P | ξk ≤ pk

β
, k = 1, 2, . . . , K

}
, then the risk measure F is equiva-

lent to AV@R1−β .

• Worst-case: If A = P, then F is the Worst-case risk measure.

In this thesis we also use a convex combination of the Expectation and AV@R measures as
proposed by Shapiro [189]:

F[Z] = λE[Z] + (1− λ)AV@R1−β[Z]. (1.2)

As the values of λ and β increase, the measure becomes less risk-averse.3 It is easy to show that
any convex combination of coherent risk measures is itself a coherent risk measure.

1.3.1 Dynamic risk measures

So far, we have only described a single-stage risk measure. In the multistage case, we refer to
risk measures as dynamic risk measures. A thorough mathematical treatment can be found in

3This differs from other authors (e.g. Philpott and de Matos [161], Shapiro [189]) who prefer the (1 − λ) on
the expectation operator. We prefer this approach because λ and β both act in the same direction. In the alternative
case, one has to remember that the measure becomes more risk-averse as λ increases or β decreases. Our approach
has the nice property that as λ→ 1 or β → 1, F[Z]→ E[Z].
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the following works [177, 186, 190, 191]; however, for this thesis, it is sufficient for the reader
to have a more intuitive understanding.

To explain dynamic risk measures, we consider a scenario tree with three stages as shown
in Figure 1.12 (ignore the dashed line for now). We define the set of nodes in the tree n ∈ N
and leaves in L. We denote children of node n ∈ N \L by n+. With each node n, we associate
a path P (n), which gives the sequence of nodes from the root node to node n. For example,
P (8) = {0, 1, 3, 8}. Each node n has an associated cost Zn, which we have depicted on the
incoming arc to the node in Figure 1.12. We assume that the cost of the root node is zero (i.e.
Z0 = 0). We also assume that the probability on each of the outgoing arcs from a node is 0.5.

To evaluate the risk of this scenario tree, we shall use the single-stage risk measure:

F[X] = 0.5E[X] + 0.5 max[X].

There are two main ways to evaluate the risk of this scenario tree: using either an end-

of-horizon risk measure, or a nested risk measure. First, we explain an end-of-horizon risk
measure. A graphical example is shown in Figure 1.12. The squares represent nodes in the
scenario tree. The circle is the root node. The dashed square encompasses the nodes over which
we are taking our risk measure.
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Figure 1.12: End-of-horizon risk measure acting on a scenario tree.

For each node n in the set of leaves L, we define the cumulative cost C(n) =
∑

i∈P (n)Zi.
For example, C(8) = Z0 + Z1 + Z3 + Z8 = 0 + 4 + 2 + −1 = $5. An end-of-horizon risk
measure F takes the risk of the scenario tree by calculating the risk of the cumulative cost of
all of the paths from the root node of the scenario tree to a leaf node. We denote this by F[C],
where C is the random variable drawn from the finite sample space {C(n) : n ∈ L} with
uniform probability.

For our example, there are eight paths from the root node to a leaf node, each of which
occurs with equal probability (i.e. 1/8). These have corresponding cumulative costs of −$7,
−$5, . . . , $7. Therefore, E[C] = $0 and max[C] = $7. Thus, the end-of-horizon risk measure
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calculates the risk of the scenario tree as:

F[C] = 0.5E[C] + 0.5 max[C] = 0.5× (0) + 0.5× (7) = $3.5.

In contrast to the end-of-horizon risk measure, a nested risk measure takes the risk of the
scenario tree according to a recursive definition. For each node n of the scenario tree, we define
the risk-adjusted cost V (n), which is the cost Zn plus all of the future costs of the subtree rooted
at node n:

V (n) =

Zn n ∈ L
Zn + Fm∈n+ [V (m)] n ∈ N \ L.

The nested risk measure takes the risk of the scenario tree as the risk-adjusted cost at the root
node: V (0).

Each of the risk measures in the recursion is evaluated at a node of the scenario tree and is
conditioned on the events that have happened in the predecessor nodes of the tree. An example
of this structure is given in Figure 1.13. We now explain how to compute the risk of a scenario
tree using a nested risk measure. Compared with the end-of-horizon risk measure, the nested
risk measure is more complicated to evaluate, so we do so in several steps. In the interest of
brevity, we shall not detail the calculation of V (n) at every node in the tree; however, we work
through a few for illustrative purposes.
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Figure 1.13: Nested risk measure acting on a scenario tree.

First, since node 7 is a leaf node, V (7) = +$1. Now consider evaluating V (3). We get:

V (3) = Z3 + Fm∈3+ [V (m)] = Z3 + 0.5Em∈3+ [V (m)] + 0.5 maxm∈3+ [V (m)] .

The set of children 3+ = {7, 8}, which have corresponding costs of V (7) = $1 and V (8) =

−$1. Therefore, V (3) = 2+0.5×(0)+0.5×(1) = $2.5. A similar argument can be constructed
to show that V (4) = −$1.5.
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Now consider evaluating V (1). We get:

V (1) = Z1 + Fm∈1+ [V (m)] = Z1 + 0.5Em∈1+ [V (m)] + 0.5 maxm∈1+ [V (m)] .

The set of children 1+ = {3, 4}, which have corresponding costs of V (3) = $2.5 and V (4) =

−$1.5. Therefore, V (1) = 4 + 0.5 × (0.5) + 0.5 × (2.5) = $5.5. A similar argument can be
constructed to show that V (2) = $1.5.

Finally, consider evaluating V (0). We get:

V (0) = Z0 + Fm∈0+ [V (m)] = Z0 + 0.5Em∈0+ [V (m)] + 0.5 maxm∈0+ [V (m)] .

The set of children 0+ = {1, 2}, which have corresponding costs of V (1) = $5.5 and V (2) =

$1.5. Therefore, V (0) = 0 + 0.5× (5.5) + 0.5× (1.5) = $3.5.
In this case, the two methods of evaluating the risk of the scenario tree produced equiva-

lent results. However, this is not always the case. In the following, we consider an example
presented by Pflug and Pichler [156] using the scenario trees given in Figure 1.14.

In each of the sub-figures in Figure 1.14, we plot a scenario tree with three stages. The first
stage is deterministic. For each node there is a 10% chance of transitioning upwards and a 90%
change of transitioning downwards. In scenario tree (a), the possible end-of-horizon costs are:
7 with probability 0.01, 6 with probability 0.09, 3 with probability 0.09, and 2 with probability
0.81. In scenario tree (b), the corresponding outcomes are 8, 5, 4, and 1. As our risk measure
we use AV@R with β = 0.1.
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Figure 1.14: Different views of risk over two scenario trees (a) and (b) using the AV@R1−0.1

risk measure. (This example is a slightly modified version of one given by Pflug and Pichler
[156, Fig. 1].)

First, let us consider scenario tree (a). From the upper branch in the second stage, there are
two possible future outcomes: 7 with probability 10% and 6 with probability 90%. Therefore,
the average value-at-risk at the 10% quantile (AV@R0.9) is 7. In the lower branch, the average
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value-at-risk is 3. Stepping back to the first stage, the nested risk measure sees a cost-to-go of
7 with probability 10% and 3 with probability 90%. Therefore, the average value-at-risk is 7.
However, if we calculate the average value-at-risk over the end-of-horizon outcomes, we find
that the average value-at-risk is 6.1.

Now, let us consider scenario tree (b). From the upper branch in the second stage, there are
two possible future outcomes: 8 with probability 10% and 5 with probability 90%. Therefore,
the average value-at-risk at the 10% quantile (AV@R0.9) is 8. In the lower branch, the average
value-at-risk is 4. Stepping back to the first stage, the nested risk measure sees a cost-to-go of
8 with probability 10% and 4 with probability 90%. Therefore, the average value-at-risk is 8.
However, if we calculate the average value-at-risk over the end-of-horizon outcomes, we find
that the average value-at-risk is 5.3.

Suppose that we are taking some action in stage one to determine the costs as given by
scenario tree (a) or (b). From a nested viewpoint, we prefer scenario tree (a) over scenario tree
(b). However, from an end-of-horizon viewpoint, we prefer scenario tree (b) over scenario tree
(a). Thus, if we use the nested formulation of risk to guide our decision-making in stage one,
we may make sub-optimal decisions from an end-of-horizon point-of-view.

Despite this problem, in this thesis we use nested risk measures because they are computa-
tionally efficient to include in stochastic dual dynamic programming, our solution method that
we introduce in the next chapter. However, the difference between a nested and end-of-horizon
risk measure is particularly relevant in Chapter 9 when we modify the single-stage risk mea-
sures in a nested risk measure with the view to modifying the end-of-horizon distribution of
outcomes.

1.4 Standard form

To recap what we have discussed so far. We can decompose a multistage stochastic optimisa-
tion problem into a series of nodes. The nodes are linked together by state variables and we
can describe the linkages by a policy graph G. Associated with each node i is a decision-rule
πi(xi, ωi) (πi(xi) for Decision-Hazard), which maps the incoming state variable xi and realisa-
tion of a random noise ωi, to a feasible control ui ∈ Ui(xi, ωi) (in the Decision-Hazard case:
ui ∈ Ui(xi)). As a result of taking the control ui, the state transitions to the outgoing state x′i
according to the transition function x′i = Ti(xi, ui, ωi), and a cost of Ci(xi, ui, ωi) is incurred.
Then, the system transitions to a new node in the policy graph according to the probability dis-
tribution of Φ. All that remains is to define an optimisation problem that can be used to find the
optimal decision-rule πi for each node i. To do this, we utilise Bellman’s principle of optimality

and form the cost-to-go for each node i, given the incoming state xi and realisation of the noise
ωi.
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Definition 22. Principle of Optimality: An optimal policy has the property that whatever the
initial state and initial decisions are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decisions. (Bellman [22])

Definition 23. Given a policy π, the cost-to-go for node i is the stage-objective as a result of
taking the control ui, plus the risk-adjusted cost-to-go of the node’s children:

Vi(xi, ωi) = Ci(xi, ui, ωi) + F
j∈i+; ωj∈Ωj

[Vj(Ti(xi, ui, ωi), ωj)] ,

where ui = πi(xi, ωi) if the node is Hazard-Decision, and ui = πi(xi) if the node is Decision-
Hazard.

Note that we when we use the notation F j∈i+; ωj∈Ωj [·], we mean that we apply the risk
measure to the distribution of outcomes after sampling all of the noise realisations in all of the
children of node i. Since the noise realisation and node transition are independent, from node i,
the probability of sampling ωj in the next node is φi,j × pωj (i.e. the probability of transitioning
from node i to node j, multiplied by the probability of observing ωj in node j). Also note that
when maximising, we refer to the value-to-go instead of the cost-to-go.

Putting together all that we have discussed so far, we can now define the class of multistage
stochastic optimisation problems that we consider in the remainder of this thesis.

Definition 24. Given a policy graph G, a multistage stochastic optimisation problem is an opti-
misation problem of the form:

min
π

{
F

i∈R+; ωi∈Ωi
[Vi(xR, ωi)]

}
, (1.3)

where xR is the initial condition of the state variable at the root node.

Readers should note that this definition does not encompass all multistage stochastic opti-
misation problems. For example, it does not consider continuous time problems, and due to
the recursive definition of the cost-to-go function, we only use nested risk measures. However,
this framework also allows single-stage risk measures within each subproblem (e.g. expected
conditional risk measures [110]), and end-of-horizon risk measures by dynamically changing
the single-stage risk measures in each subproblem (e.g. Baucke et al. [14], Pflug and Pichler
[157]). In addition, the nonanticipative constraints usually associated with multistage stochas-
tic programming are satisfied by our definition of a policy.

The goal of multistage stochastic optimisation is to find the policy π that minimises Eq. 1.3.
If the policy π is not given explicitly, the cost-to-go from the start of node i can be formulated
as an optimisation problem. The formulation is different depending upon whether the node is
Hazard-Decision or Decision-Hazard. We call the optimisation problem associated with each
node a subproblem.
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Definition 25. A Hazard-Decision subproblem is the optimisation problem:

HDi(xi, ωi) : Vi(xi, ωi) = min
ui

Ci(xi, ui, ωi) + F
j∈i+; ωj∈Ωj

[Vj(x
′
i, ωj)]

s.t. x′i = Ti(xi, ui, ωi)

ui ∈ Ui(xi, ωi),
(1.4)

where the decision-rule πi(xi, ωi) takes the value of ui in the optimal solution.

Definition 26. A Decision-Hazard subproblem is the optimisation problem:

DHi(xi) : Vi(xi) = min
ui

F
ωi∈Ωi; j∈i+

[
Ci(xi, ui, ωi) + Vj

(
x′i,ωi

)]
s.t. x′i,ωi = Ti(xi, ui, ωi), ∀ωi ∈ Ωi

ui ∈ Ui(xi)
(1.5)

where the decision-rule πi(xi) takes the value of ui in the optimal solution.

Finally, a few last pieces of terminology. Given a policy π, we can simulate the multistage
stochastic optimisation problem by the procedure given in Algorithm 1. As a result, we end
up with a sequence of nodes in, states xn, controls un, noise terms ωn, and costs cn for n ∈
{1, . . . , N}.

Algorithm 1: Simulating the policy.
set x1 = xR
set n = 1
set i0 = R
while in−1+ 6= ∅ do

sample in from in−1+

sample ωn from Ωin

set un = πin(xn, ωn)
set cn = Cin(xn, un, ωn)
set xn+1 = Tin(xn, un, ωn)
set n = n+ 1

end

We also need to define a scenario and the cumulative cost of a scenario.

Definition 27. A scenario is a sequence of node and noise realisations (i1, ω1), (i2, ω2),. . . ,
(iN , ωN).

Definition 28. The cumulative cost of a scenario is
∑N

n=1 c
n.
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1.5 Summary

This chapter introduced the reader to multistage stochastic optimisation. We began the chapter
by clearly defining the terminology that we shall use in this thesis. Then, we identified the
two building blocks in multistage stochastic optimisation: the Hazard-Decision node, and the
Decision-Hazard node. Next, we introduced the concept of a policy graph. A policy graph
encapsulates the structure of the multistage stochastic optimisation problem by defining the
relationships between nodes. We also introduced a graphical representation of the policy graph
as a shorthand for communicating the structure of the problem.

We now have all the tools necessary to formulate multistage stochastic optimisation prob-
lems. However, there can be many ways of modelling the same problem. For example, the
modeller can choose between a compact representation like Figure 1.4 and an expanded repre-
sentation like Figure 1.5, and even between Decision-Hazard and Hazard-Decision nodes like
we showed in Figures 1.2 and 1.3. Therefore, it is useful to consider the solution approach at
the modelling step in order to formulate the problem in a way that is best suited to the par-
ticular solution approach. The solution approach that we use in this thesis is called stochastic

dual dynamic programming (SDDP). In the next chapter, we provide an overview of the SDDP
algorithm and survey the current state-of-the-art.



Chapter 2

Stochastic dual dynamic programming

In the previous chapter, we introduced multistage stochastic optimisation. Such problems are
notoriously difficult to solve [165]. There are a few contributing reasons for this. First, many
real-world applications, such as the ones we discuss in Chapters 8 and 9 of this thesis, have
multiple state and control variables. Therefore, they quickly run into dynamic programming’s
well-known “curse of dimensionality” [23]. Compounding this curse is the stochastic element
of the problem. Since the noise term is sampled independently in each subproblem, a linear
policy graph with T stages has

∏T
t=1 |Ωt| possible realisations for the sequence of noise terms

ω1, ω2, . . . , ωT . Therefore, the total number of possible realisations increases exponentially as
the number of stages increases, and polynomially (with order T ) as the number of elements in
the sample space for each noise term increases. (The example in Chapter 8 has on the order
of 1068 scenarios!) A number of solution methods are available for solving multistage stochas-
tic optimisation problems (e.g. approximate dynamic programming [165], progressive hedging
[180], and stochastic dynamic programming, which we describe in Appendix A). However, in
this thesis, we focus on one particular method: stochastic dual dynamic programming (SDDP).

2.1 Introduction

The stochastic dual dynamic programming (SDDP) algorithm dates back to the seminal work
of Pereira and Pinto [154]. However, the idea can be traced back to Benders decomposition [25]
and the L-shaped method of Van Slyke and Wets [201] (originally for two-stage problems, it
was extended to the multistage case by Louveaux [131] and Birge [29]). The method has been
studied extensively in the literature [162, 189, 191]. We can also recommend the accessible
introductions to SDDP provided by Newham [146, Ch. 4] and Guan [92, Ch. 5]. Although the
basic method itself is simple, many refinements and modifications have been suggested since
its inception. In this chapter, we introduce the basic algorithm for readers unfamiliar with its
workings and survey the current state-of-the-art implementations. Readers should also be aware
that, in addition to the original algorithm, the term SDDP can refer to a broad class of sampling

25
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algorithms, all of which employ similar techniques (e.g. AND [59], CUPPS [43], DOASA
[162], and ReSa [108]). Though we call the algorithm described in this section “SDDP”, it is
perhaps closest to the DOASA1 algorithm of Philpott and Guan [162].

For multistage stochastic linear programs, Philpott and Guan [162] have shown that the
SDDP algorithm will converge to an optimal policy almost surely in a finite number of itera-
tions. (Earlier proofs, such as Chen and Powell [43] and Linowsky and Philpott [128], made use
of an unstated assumption regarding the application of the second Borel-Cantelli lemma [90].)
The convergence result has since been extended to more general convex problems by Girardeau
et al. [85] and to convex, risk-averse problems by Guigues [94].

There are two main variants of the SDDP algorithm: average-cut and multi-cut. In this the-
sis, we only consider the average-cut variant. Consequently, we shall also restrict our attention
to Hazard-Decision nodes (the details of why should not concern the reader), and we use the
term node interchangeably with Hazard-Decision node (and subproblem interchangeably with
Hazard-Decision subproblem). However, we note that this is not a limiting assumption; recall
that we showed earlier how any Decision-Hazard node can be expressed as two Hazard-Decision
nodes with an expanded number of state variables.

The chapter is laid out as follows. First, in Section 2.2 we introduce the basic SDDP algo-
rithm. Then, in Section 2.3 we describe various ways of terminating the algorithm. In Section
2.4 we describe cut selection, an important heuristic for improving the computational perfor-
mance of the SDDP algorithm. We describe a variety of other computational improvements in
Section 2.5. In the final two sections, we explore two issues with SDDP: numerical issues in
Section 2.6 and degeneracy in Section 2.7. We conclude with a short summary in Section 2.8.

2.2 The algorithm

Recall that a Hazard-Decision subproblem is the optimisation problem:

HDi(xi, ωi) : Vi(xi, ωi) = min
ui

Ci(xi, ui, ωi) + F
j∈i+; ωj∈Ωj

[Vj(x
′
i, ωj)]

s.t. x′i = Ti(xi, ui, ωi)

ui ∈ Ui(xi, ωi),
(2.1)

where the decision-rule πi(xi, ωi) takes the value of ui in the optimal solution.

Evaluating the future cost component of the objective (which we call the cost-to-go func-
tion) in each subproblem HDi is non-trivial. However, the recursive definition of a multistage
stochastic program makes the problem amenable to dynamic programming [23]. One possi-
ble solution method is backward recursion, which we describe in Appendix A (along with
DynamicProgramming.jl, the Julia library that we have developed to solve multistage
stochastic optimisation problems using backward recursion). This method works by recursively

1Dynamic Outer Approximation Sampling Algorithm.
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evaluating the risk-adjusted cost-to-go at a discretised set of points in the state-space. To eval-
uate the cost-to-go at a point in the state-space that is not in the discretised set of points, an
interpolation scheme is used. However, this method quickly runs into the “curse of dimension-
ality.” (We will observe this curse in Chapter 7.)

Instead of evaluating the cost-to-go function at a set of discretised points, SDDP builds an
outer approximation of the cost-to-go function using hyperplanes. For this reason, a number
of technical assumptions are required. Given a problem represented by the policy graph G =

(R,N , E ,Φ), these assumptions are:

(A1) given a fixed ωi, problem (2.1) can be formulated as a linear program2;
(A2) the sample space Ωi of random noise outcomes is finite at each node i ∈ N ;
(A3) the policy graph G is acyclic with a finite number of subproblems; and
(A4) the feasible region of each subproblem i ∈ N is non-empty, and there exists an optimal

solution for every reachable incoming state xi and realisation of the noise ωi.

Readers should note that missing from this list is the requirement that random quantities in
different stages are independent; this is implicitly satisfied by the definition of a policy graph.

1 2 3 4 5

0.2

0.4

0.6

0.8

1

x′i

θ i

Figure 2.1: Outer approximation of the function θi ≥ e−x
′
i using cuts.

Due to assumption (A1), the cost-to-go function (i.e. Fj∈i+; ωj∈Ωj [Vj(x
′
i, ωj)]) is convex with

respect to the state variable x′i. Therefore, it can be replaced by a variable θi and approximated
by the maximum of a set of linear functions, which we refer to as cuts (an example is shown in
Figure 2.1). SDDP constructs the set of cuts iteratively. Each iteration consists of two phases:
a forward pass, which samples a sequence of subproblems and values for the state variables
S = [(i1, x

′
i1

), (i2, x
′
i2

), . . . ], and a backward pass, which refines the approximation of the cost-
to-go function by adding a new cut to each of the subproblems visited in the forward pass. The

2With some additional assumptions, this restriction can be relaxed to a broader class of convex programs (see
Girardeau et al. [85] for details); however, it is not necessary for the work in this thesis.
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resulting approximated subproblem at node i after K iterations can be expressed as:

SPKi (xi, ωi) : V K
i (xi, ωi) = min

ui
Ci(x̄i, ui, ωi) + θi

s.t. x′i = Ti(x̄i, ui, ωi)

x̄i = xi, [λi]

ui ∈ Ui(x̄i, ωi)
θi ≥ αki + βki x

′
i, k ∈ {1, 2, . . . , K}.

(2.2)

Note that λi is the vector of dual variables associated with the constraints x̄i = xi. In other
words, λi is a valid subgradient for the function V K

i (xi, ωi) with respect to xi. In the literature
many authors (e.g. [154, 162]) compute the subgradient of V K

i (xi, ωi) with respect to the in-
coming state variables xi by computing a transformation of the dual of the transition constraints
(i.e. x′i = Ti(x̄i, ui, ωi)), taking into account the feasible set of actions Ui. This approach is
overly complicated. Our solution (also used by Girardeau et al. [85]) is to introduce a dummy
variable x̄i with the constraint3:

x̄i = xi, [λi].

This has downside of adding one extra variable and constraint for each state variable, but results
in a simpler subgradient calculation.

2.2.1 Computing cut coefficients

The description above does not detail how to calculate the cut coefficients α and β. We address
this question below.

Consider a node j, given an incoming state variable x̂ and a realisation of the noise ωj . We
can solve SPKj and record the optimal objective value V K

j (x̂, ωj), which we denote V̄ K
j,ωj

, and
the optimal value of the dual variable λj , which we denote λ̄Kj,ωj . Since V K

j is convex with
respect to xj , we have that:

V K
j (xj, ωj) ≥ V̄ K

j,ωj
+ 〈λ̄Kj,ωj , (xj − x̂)〉,

where 〈, 〉 is the inner product. Re-arranging terms we get:

V K
j (xj, ωj) ≥

(
V̄ K
j,ωj
− 〈λ̄Kj,ωj , x̂〉

)
+ 〈λ̄Kj,ωj , xj〉.

However, recall that we wish to approximate the cost-to-go function Fj∈i+; ωj∈Ωj [Vj(x
′
i, ωj)].

To do so, consider the following proposition from Philpott et al. [160, Proposition 4], which we
restate using our notation without proof. (Recall that ξ is the changed probability distribution
from Section 1.3.)

3Alexandre Street and Davi Valladão call this the fishing dual.
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Proposition 1. Suppose for each ω ∈ Ω, that g(x̂, ω) is a subgradient of Z(x, ω) at x̂. Then,

given F[Z(x, ω)] = Eξ[Z(x, ω)], Eξ[g(x̂, ω)] is a subgradient of F[Z(x, ω)] at x̂.

Using this result, we can construct a valid cut via the method given in Algorithm 2.

Algorithm 2: Cut calculation algorithm.
Solve SPKj (x̂, ωj) for all j ∈ i+ and ωj ∈ Ωj

Compute ξ so that Eξ
[
V̄ K
j,ωj

]
= Fj∈i+;ωj∈Ωj

[
V̄ K
j,ωj

]
Set βK+1

i = Eξ
[
λ̄Kj,ωj

]
Set αK+1

i = Eξ
[
V̄ K
j,ωj

]
− 〈βK+1

i , x̂〉
Obtain the inequality Fj∈i+; ωj∈Ωj [Vj(x

′
i, ωj)] = θi ≥ αK+1

i + 〈βK+1
i , x′i〉

We now describe an iteration of the SDDP algorithm in more detail.

2.2.2 An iteration

Each iteration consists of a forward pass, in which a sequence of nodes and states is sampled,
and a backward pass, in which the cost-to-go function at each node visited on the forward pass
is refined at the point in the state-space sampled on the forward pass.

Forward pass

To begin the forward pass in iteration K, we set our current state x to the value of the outgoing
state variable at the root node xR, and we set the list of visited node-state pairs S to the empty
list. Then, we apply the following procedure.

(a) Sample node i from the children of nodeR according to the policy graph transition matrix
Φ, and then transition to that node.

(b) If i+ is empty, terminate the forward pass; otherwise continue to step (c).
(c) Sample a noise ωi from Ωi.
(d) Solve SPKi (x, ωi).
(e) Append (i, x′i) to the list S .
(f) Set x = x′i.
(g) Sample a new i from i+ according to the transition matrix Φ, then go to step (b).

Backward pass

On the backward pass, we backtrack up the sequence of node-state pairs S that we visited on
the forward pass. For each node-state pair (in, x

′
in) in S, we set i = in and x̂ = x′in , and then

construct the cut according to the cut-calculation method given in Algorithm 2. The resulting
cut is added to the subproblem SPKin so that it becomes SPK+1

in . Pseudo-code for the full SDDP
algorithm is given in Algorithm 3.
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Algorithm 3: The complete SDDP algorithm.
set K = 0
while not stopped do

/* Forward Pass */
set x = xR, S = [ ]
sample i from R+ according to the transition matrix Φ
while i+ 6= ∅ do

sample ωi from Ωi

solve SPKi (x, ωi)
append (i, x′i) to the list S
set x = x′i
sample new i from i+ according to the transition matrix Φ

end
/* Backward Pass */
for (i, x̂) in reverse(S) do

for j ∈ i+ do
for ωj ∈ Ωj do

solve SPKj (x̂, ωj)
set V̄ K

j,ωj
to the optimal objective value

set λ̄Kj,ωj to the value of λj in the optimal solution
end

end
compute ξ so that Eξ

[
V̄ K
j,ωj

]
= Fj∈i+;ωj∈Ωj

[
V̄ K
j,ωj

]
set βK+1

i = Eξ
[
λ̄Kj,ωj

]
set αK+1

i = Eξ
[
V̄ K
j,ωj

]
− 〈βK+1

i , x̂〉
add the cut θi ≥ αK+1

i + 〈βK+1
i , x′i〉 to SPKi

end
increment K

end

Initialisation

Note that in the first iteration (i.e. K = 0), there are no cuts. As a consequence, the cost-to-go
variable θi is free and the subproblem SP0

i is unbounded. Therefore, it is necessary to add a
valid lower bound to the cost-to-go variable so that θi ≥ −M , where M is some sufficiently
large number. The question of “sufficient” is somewhat ill-defined. The bound should not be as
large as possible (since this will help convergence and avoid some numerical issues), but not so
small as to cut off some of the optimal region. In most cases, the modeller can bring domain
knowledge to identify a good bound. However, if this is not the case, we recommend solving
the model using a few different bounds and confirming that the results are the same. In addition,
when simulating the policy, the modeller should check if the cost-to-go variable ever takes the
solution θi = −M at any node i in the policy graph, since this could indicate that the problem
has not yet converged or that the bound M is too small.
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2.3 Stopping rules

Recall that Philpott and Guan [162] (among others) have shown that the SDDP algorithm will
converge to an optimal policy almost surely in a finite number of iterations. In practice, this
number is likely to be very large. Moreover, they do not specify a convergence criterion.
Therefore, we need some way of pre-emptively terminating SDDP when the solution is “good
enough.” Several ways have been proposed in the literature, which we refer to as stopping rules,
and we review them in this section. However, before we begin, observe that since the cuts form
an outer-approximation of the cost-to-go function, we can obtain a valid lower bound z to the
original multistage stochastic optimisation problem (i.e. Eq. 1.3) by evaluating:

z = F
i∈R+; ωi∈Ωi

[
V K
i (xR, ωi)

]
.

We shall refer to this as the lower bound. We now proceed to describe the statistical stopping

rule.

2.3.1 The statistical stopping rule

One way to obtain an upper bound for the problem is to simulate every possible sequence of
subproblem and noise realisations (recall that we refer to one single sequence as a scenario).
However, in practice, the number of scenarios is very large. (The models we solve in Chapter 8
of this thesis have on the order of 1068 scenarios.) As a consequence, this approach of evaluating
the upper bound is intractable. If the model is risk-neutral, then Monte Carlo simulation can
be used to obtain an estimate for the upper bound. However, Monte Carlo simulation is less
straightforward for risk-averse models. Each (iid) replication of the Monte Carlo simulation
samples a scenario from the full sample space of scenarios, solves each subproblem in sequence,
then sums the stage-objectives to produce a single cumulative cost for the scenario. Pseudo-code
for this is given in Algorithm 1 (from Section 1.4).

Using the cumulative costs from the N Monte Carlo replications y1, y2, . . . , yN , Pereira
and Pinto [154] form a confidence interval for the mean of the expected cumulative cost (i.e.
the upper bound). Based on the lower bound z and this confidence interval, they propose the
following stopping rule, which we call the statistical stopping rule.

Definition 29. Statistical stopping rule: Given a lower bound z and cumulative costs y1, y2,
. . . , yN for theN Monte Carlo replications, terminate SDDP when the lower bound z lies above
the lower limit of a confidence interval constructed for the mean of the Monte Carlo replications.
That is, when:

z ≥ µy − z

√√√√ 1

N(N − 1)

N∑
i=1

(µu − yi)2,
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where µy = 1
N

N∑
i=1

yi, and z is the z-score for a certain level of confidence (e.g. z = 1.96 for a

95% confidence interval).

There are two problems with this stopping rule. First, if the cumulative costs have a large
variance, or we conduct too few simulations (i.e. N is small), then the confidence interval will
be very wide. Therefore, we may terminate too early. As a result, choosing when to simulate
the policy, how many replications to conduct, and the level-of-confidence at which to build the
confidence interval all have an impact on the quality of the policy. It is up to the practitioner to
determine what they deem is “good enough.” Second, this method can only be used when the
risk measure is the expectation operator. This rules out a large class of problems.

However, given the risk measure is the expectation operator, several improvements have
been proposed. Most of these improvements are focused on reducing the variance of the esti-
mator for the expected cost (i.e. the upper bound). Therefore, instead of sampling independent
and identically distributed (iid) scenarios for the Monte Carlo replications, variance reduction
strategies (such as antithetic variates, control variates, importance sampling, Latin hypercube
sampling, and quasi-Monte Carlo sampling) are used [21, 57, 109, 111]. These strategies re-
duce the variance of the estimator, but do not address the problem of when to perform the Monte
Carlo simulation and how many replications to conduct. The problem of how many replications
to conduct is addressed by Bayraksan and Morton [20] in their method of sequential sampling.

Sequential sampling

The basic idea of sequential sampling is to conduct a small number of Monte Carlo replications
and then construct the confidence interval. If the confidence interval shows no evidence of
convergence, we restart the iterations of SDDP. Otherwise, we perform more replications and
re-check. Once we have sampled a large number of replications and the statistical stopping rule
still holds, we terminate the SDDP algorithm. In Algorithm 4, we give the pseudo-code for a
modified version of the sequential sampling method. Compared with Bayraksan and Morton
[20], the key differences are that we place an upper bound Nmax on the number of replications
(typically very large), and that we choose a fixed step size of N∆.

Sequential sampling overcomes many of the problems associated with the statistical stop-
ping rule. Since we terminate the simulation step early if there is no evidence of convergence
(thereby avoiding unnecessary computation), the stopping rule can be applied frequently. How-
ever, since we can make the upper boundNmax very large, we can be sure that we only terminate
the SDDP algorithm after conducting a large number of replications. Moreover, the sequential
sampling algorithm can be used in conjunction with the variance reduction techniques men-
tioned previously to further improve the performance.

One problem that sequential sampling does not overcome is the limitation to risk-neutral
problems. To terminate risk-averse problems, different stopping rules must be used.
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Algorithm 4: Modified sequential sampling algorithm.
input : Nmin, Nmax, N∆, z
set N0 = 0, N1 = Nmin, k = 1, converged = true
while (Nk ≤ Nmax) ∧ (converged) do

conduct Nk −Nk−1 replications to obtain estimates yNk−1+1, yNk−1+2, . . . , yNk

set µy = 1
Nk

Nk∑
i=1

yi

set z = µy − z
√

1
Nk(Nk−1)

Nk∑
i=1

(µy − yi)2

if z ≤ z then
set converged = false

else
set Nk+1 = Nk +N∆

set k = k + 1
end

end
output: The Boolean converged indicating if the algorithm has converged.

2.3.2 The bound stalling stopping rule

Instead of computing an upper bound, we can use the evolution of the lower bound as an estima-
tor of convergence. Some authors (e.g. [92, 146]) suggest terminating the SDDP algorithm if the
lower bound fails to change by more than a certain tolerance for a given number of consecutive
iterations. We refer to this as bound stalling.

Definition 30. Bound stalling stopping rule: Given a sequence of lower bounds z1, z2, . . . , zK ,
a parameter n ∈ {1, 2, . . . , K − 1}, and a tolerance ε ≥ 0, terminate SDDP if:

zi − zi−1≤ ε, ∀i ∈ {K,K − 1, . . . , K − n}.

The benefits of the bound stalling stopping rule are that it is simple to calculate and that it
can be used on risk-averse problems. However, like the statistical stopping rule, it has some
flaws. The largest is that the lower bound could continue to improve at a very slow rate for
many iterations. Therefore, there is no guarantee concerning how far the lower bound is from
the upper bound when it “stalls”. The bound may also stall early in the algorithm if, through
“bad luck”, we sample a short sequence of scenarios which do not improve the lower bound.

2.3.3 Other limits

The previous two stopping rules (statistical and bound stalling) both have the risk of terminating
the algorithm with a sub-optimal solution. Therefore, some authors (e.g. [86, 159]) advocate
choosing either a fixed number of iterations to perform, or a time limit before terminating.

Definition 31. Time limit stopping rule: Terminate SDDP after s seconds of computation.
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Definition 32. Iteration limit stopping rule: Terminate SDDP after k iterations.

There are two reasons for preferring these stopping rules over the statistical and bound
stalling stopping rules. First, the statistical stopping rule is not suitable for risk-averse prob-
lems. Second, the bound stalling stopping rule does not consider the quality of the policy. The
approach we use in practice is to set an iteration limit, solve and then simulate the policy, and
then plot the solution. It is usually easy to identify if the solution has not converged as the pol-
icy will make “dumb” decisions such as selling items at a low price or incurring large penalties
for violating certain constraints. If sub-optimal decisions are identified, we perform more itera-
tions. This is a highly subjective stopping rule. However, we find that it works well in practice.
(We discuss this further in Chapter 9.)

Before we finish our discussion on stopping rules for SDDP, it is worth briefly mentioning
three deterministic methods for evaluating the upper bound.

2.3.4 Deterministic convergence

First, Philpott et al. [160] develop a deterministic upper bound for risk-averse problems. This
is an attractive feature as it can be used as a deterministic stopping rule. It can also be used
to direct the search towards areas of the state-space that require improvement, rather than the
random sampling that occurs in the traditional algorithm. However, in their experiments, the
computational performance of the method was poor, requiring an order of magnitude more
time to construct the upper bound than the lower bound. Moreover, the computational effort in-
creases dramatically with the number of state variables, limiting the method to low-dimensional
problems [160].

Baucke et al. [13] construct the upper bound via an outer approximation of the dual prob-
lem. Moreover, the algorithm they propose does not randomly sample the noise terms in each
subproblem on the forward pass. Instead, they use the upper and lower bounds to direct the
search towards the area of the state-space with the largest gap between the upper and lower
bounds.

Leclère et al. [125] propose a similar method to Baucke et al. and also construct the upper
bound via an outer approximation of the dual problem. However, their algorithm samples states
in both the primal- and dual-SDDP subproblems. This allows both problems to be solved in
parallel.

2.4 Cut selection

As the SDDP algorithm progresses, many cuts (typically thousands) are added to each subprob-
lem. This increases the computational effort required to solve each subproblem. (A real-world
model may begin with subproblems that contain tens of variables and constraints, only to add
10,000 constraints!) In addition, many of the cuts discovered early in the solution process may
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be redundant once additional cuts are added. This issue has spurred a vein of research (e.g.
[11, 56, 143, 155]) into heuristics for choosing cuts to keep or remove; henceforth referred to as
cut selection. These heuristics attempt to select a subset of cuts to keep, while trading off two
opposing forces:

1. minimising the number of cuts in order to reduce the solve time of each subproblem; and
2. maximising the number of cuts in order to improve the approximation of the cost-to-go

function.

In addition, since any time spent computing the set of cuts to keep is time not spent discovering
cuts, the heuristics should be computationally cheap to evaluate.

Various authors (e.g. [11, 56, 116]) have reported that cut selection can offer an order of
magnitude reduction in the solution time required to conduct a fixed number of iterations with
minimal degradation in solution quality.

2.4.1 Heuristics

One approach to selecting cuts is to maintain all the cuts except those that can be proven to be
never binding in the optimal solution of SPKi for any reachable values of xi and ωi. For the j th

cut in subproblem i, this can be done by solving the following LP (which was called the test of

usefulness by Pfeiffer et al. [155]):

Di(j) = min
x′i,θi

θi −
(
αji + 〈βji , x′i〉

)
s.t. θi ≥ αki + 〈βki , x′i〉, k ∈ {1, 2, . . . , K}.

(2.3)

If the objective value Di(j) > 0, then we can conclude that cut j is not binding anywhere in the
state-space, and it can be safely deleted. We refer to this heuristic as exact cut selection. Since
we only delete cuts that are proven to be never binding, this cut selection heuristic maintains
the best approximation of the cost-to-go function. However, it is expensive to compute since it
involves solving an LP for every cut in every subproblem.

Perhaps the most comprehensive exploration of cut selection has been conducted by de
Matos et al. [56], who experimentally analysed the different performance of various cut selec-
tion heuristics. We now describe the best performing heuristic from that analysis, which they
call Level One cut selection.

Level One cut selection

The intuition behind Level One cut selection is that we want to keep all the cuts that are binding
in some part of the state-space. However, instead of solving the expensive test of usefulness, we
can discretise the state-space and record the best cut at each of the discretised points. Unfortu-
nately, this suffers from the same curse of dimensionality as dynamic programming. Therefore,
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Level One cut selection only records the best cut at the states visited on the forward pass. We
call the best cut the dominating cut. At a point in the state-space x̂ in node i, the value of the
dominating cut is given by:

θ̄ = max
k=1,2,...,K

αki + 〈βki , x̂〉. (2.4)

We call the argument k∗ which achieves the maximum the index of the dominating cut. The
Level One cut selection method works as follows (for notational simplicity, we drop the sub-
problem index i). After K iterations, we store for k = 1, 2, . . . , K:

1. the list of visited states (i.e. x′i), which we denote x̄1, . . . , x̄K ;
2. the index of the dominating cut at each sampled state x̄k, which we denote j1, . . . , jK ;
3. the value of the dominating cut at each state, which we denote θ̄1, . . . , θ̄K ; and
4. the number of states at which the cut k is dominant, which we denote d1, . . . , dK .

After adding the cut to subproblem i in iteration K + 1, we update the data listed above as
follows. First, we assume that the new cut is dominant for the sampled point. (This is not
necessarily true if other cuts are dominating but have been removed in a previous iteration.)
Then, we loop through the previously visited states and evaluate the new cut at those points.
If we find that the new cut is dominating, we update jk and θ̄k and increment our counter for
dK+1. Having looped through the previously visited states, we perform a similar loop comparing
previously discovered cuts evaluated at the new state, since a cut that was removed in a previous
iteration may now be the dominating cut. Pseudo-code is given in Algorithm 5. At any time,
the set of cuts that we should keep in subproblem i is:

{k : dki > 0, k = 1, 2, . . . , K}.

We favour Level One cut selection over other approaches (e.g. [143, 155]) since it is compu-
tationally cheap to evaluate and out-performs many other cut selection heuristics [56]. Another
approach, proposed by Löhndorf et al. [130], is to reject cuts if they do not improve the cost-to-
go approximation by more than some small value ε; however, we have not tested this method.

2.4.2 Implementation

Notably missing from papers such as de Matos et al. [56] is a description of how to implement,
computationally, the addition and removal of cuts from the subproblems. For example, should
we apply the cut selection heuristic every time we find a new cut? Or should we cache a number
of cuts and then process them in batch form. At the solver-level, should we delete cuts that are
no longer selected and add new cuts? Or should we modify, in-place, the coefficients α and β
of a constraint θ ≥ α>x+ β that is not selected with new coefficients α∗ and β∗?

SDDP.jl, a library that we have developed for solving multistage stochastic optimisation
problems using SDDP (described in the next chapter), has some technical limitations which
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Algorithm 5: Level One update step.
/* Assume new cut is dominant at new state. */
set dK+1 = 1
set jK+1 = K + 1
set θ̄K+1 = αK+1 + 〈βK+1, x̄K+1〉
/* Test cut (K+1) against previously visited points. */
for k = 1, 2, . . . , K do

set y = αK+1 + 〈βK+1, x̄k〉
if y > θ̄k then

set dK+1 = dK+1 + 1
set djk = dj

k − 1
set jk = K + 1
set θ̄k = y

end
end
/* Test old cuts against new state. */
for k = 1, 2, . . . , K do

set y = αk + 〈βk, x̄K+1〉
if y > θ̄K+1 then

set dk = dk + 1
set djK+1

= dj
K+1 − 1

set jK+1 = k
set θ̄K+1 = y

end
end

prevent it from deleting constraints or modifying constraint coefficients (the specifics of these
limitations should not concern the reader). The approach we take in SDDP.jl is to add each
newly discovered constraint, and then periodically rebuild each subproblem using a subset of
the cuts chosen using the cut selection heuristic. Since this implementation includes a complete
rebuild of the model, there is a trade-off between the reduction in solution time as a result
of solving a model with fewer constraints and the fixed cost of rebuilding the model. Tuning
this “rebuild-frequency” parameter is problem-specific but can result in an order of magnitude
decrease in solution time [116].

Finally, although we have no experience with modifying the coefficients in-place, we have
anecdotal evidence (J. Dias Garcia, personal communication, June, 2017) that the modification
in-place strategy is more efficient than deleting and adding constraints. This strategy is also
used in DOASA [159], a C++ implementation of SDDP that we benchmark SDDP.jl against
in the next chapter. If technically feasible, we believe this technique should be implemented
and tested in any new SDDP implementation.
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Computational improvements

Fewer iterations

Exploit structure (§2.5.1)

Formulations (§2.5.8)

Average-cut

Multi-cut

Initialisation (§2.5.5)

Iteration-schemes (§2.5.3)

CUPPS

Multi-scenario

Scenario incrementation

Single-scenario

Regularisation (§2.5.4)

Sampling schemes (§2.5.2)

Forward pass

Stopping rules (§2.3)

Deterministic

Sequential sampling

Variance reduction

Faster iterations

Cut selection (§2.4)

Heuristics

Implementation

Inexact cuts (§2.5.7)

Numerical issues (§2.6)

Numerical stability

Solver choice

Parallelism (§2.5.6)

Asynchronous

Sampling schemes (§2.5.2)

Backward pass

Figure 2.2: Organisation of computational improvements with section references.
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2.5 Other computational improvements

In addition to cut selection and variance reduction techniques, various computational improve-
ments have been suggested. Broadly speaking, these improvements can be clustered into two
main types: improvements that result in faster iterations, and improvements that result in fewer

iterations. In Figure 2.2, we present a chart that categorises the computational improvements
suggested in the literature. We have already discussed stopping rules (Section 2.3) and cut
selection (Section 2.4). In this section, we review the other improvements.

2.5.1 Exploit structure

It is possible to exploit structure in the policy graph on the backward pass. For example, assume
subproblem i1 is sampled on the forward pass, and there exists another subproblem i2 such that
i+1 = i+2 . (This property is common in Markovian policy graphs.)

On the backward pass, we use the cut calculation algorithm (Algorithm 2) to derive a valid
cut to add to the subproblem i1. This involves solving SPKj (x̂, ωj) for all j ∈ i+1 and ωj ∈ Ωj ,
and then computing ξ so that:

E ξ

[
V̄ K
j,ωj

]
= Fj∈i+1 ; ωj∈Ωj

[
V̄ K
j,ωj

]
.

However, if i+1 = i+2 , then in doing so, we have also solved SPKj (x̂, ωj) for all j ∈ i+2 and
ωj ∈ Ωj , and obtained values for V̄ K

j,ωj
and λ̄Kj,ωj . Therefore, we can derive a valid cut for

subproblem i2 by computing the new changed probability distribution {ξk} such that:

E ξ

[
V̄ K
j,ωj

]
= Fj∈i+2 ; ωj∈Ωj

[
V̄ K
j,ωj

]
,

without having to re-solve the subproblems. Compared with the cost of solving the subprob-
lems, computing this changed probability distribution is cheap, and we obtain an additional cut
with minimal computational effort.

2.5.2 Sampling schemes

Forward pass

If we sample the forward pass using the true probabilities, then, in an out-of-sample simulation,
we tend to get a good approximation of the cost-to-go function at the points we visit often and a
bad approximation at the points we visit rarely. To overcome this problem, Guan [92] suggests
that there is no need to sample trajectories on the forward pass with their true probability (so
long as when the cuts are added on the backward pass the original probability distribution is
used). With this technique, we adjust the probabilities on the forward pass so that we visit rare
states more often than we otherwise would.
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Backward pass

If the noise ωi in each subproblem i only appears in the right-hand side of the constraints,
then solving a subproblem with any realisation of the noise in the backward pass of the SDDP
algorithm will result in a cut that forms a valid outer approximation. This is because the optimal
dual solution λ∗ for the primal problem:

min c>x

s.t. Ax ≥ b [λ],

x ≥ 0

is feasible (but sub-optimal) for the dual problem:

max λ>b

s.t. A>λ ≤ c [x],

λ ≥ 0

with any value of b. Philpott and Guan [162] use this fact to show that on the backward pass, it
is not necessary to sample all ωj ∈ Ωj . The algorithm will still converge, provided the sampling
method satisfies their Backward Pass Sampling Property4.

2.5.3 Iteration-schemes

An iteration-scheme defines the sequence of forward and backward passes that are conducted
in the SDDP algorithm. For a given model, different iteration-schemes will have different rates
of convergence. In the following, we detail four different iteration-schemes. However, it is
possible to create other, hybrid, iteration-schemes based on combinations of those presented
below.

Single-scenario

In the SDDP algorithm, as previously described, each iteration consists of a single forward
pass, followed by a single backward pass along the sequence of nodes visited. This is the
single-scenario iteration-scheme described by Philpott and Guan [162]. A schematic is shown
in Figure 2.3 for two iterations. The numbers on the arcs denote the order in which the steps are
taken.

Multi-scenario

One iteration in the original SDDP algorithm (i.e. of Pereira and Pinto [154]) consists of 200
forward passes, followed by a backward pass along each of the forward passes. Philpott and

4The Backward Pass Sampling Property states that we sample all of the noise realisations ωj infinitely many
times with probability 1 in the backward pass.
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1,5 2,6

3,74,8

Figure 2.3: Schematic of the single-scenario iteration-scheme.

Guan [162] called this the multi-scenario iteration-scheme. A schematic is shown in Figure 2.4.

1,3 2,4

5,67,8

Figure 2.4: Schematic of the multi-scenario iteration-scheme.

CUPPS

Another scheme is proposed by Chen and Powell [43] in their CUPPS algorithm: instead of
having separate forward and backward passes, the CUPPS algorithm combines the two by sim-
ulating a node, and then adding a cut before it transitions to the next node. A schematic is shown
in Figure 2.5.

1,5 3,7

4,82,6

Figure 2.5: Schematic of the CUPPS iteration-scheme.

Scenario incrementation

As a trade-off between the single-scenario and multi-scenario iteration-schemes, de Matos et al.
[56] propose a method of scenario incrementation. They suggest that as the algorithm proceeds,
the number of forward passes per iterations should increase. In the computational benchmarks
they performed, this strategy was shown to out-perform both the single-scenario and multi-
scenario iteration-schemes. However, de Matos et al. [56] did not compare their method with a
CUPPS style iteration-scheme.

2.5.4 Regularisation

Initial iterations of the SDDP algorithm have the tendency to jump between solutions in very
different parts of the state-space due to a poor approximation of the cost-to-go function. As an
example, consider a problem with a single state variable. In the first iteration, a cut is added with
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a negative dual, and the subproblem optimises towards the upper bound of the state variable.
Then, in the second iteration, a cut with a positive dual is added, and the subproblem optimises
towards the lower bound of the state variable. To overcome this problem, various authors (e.g.
[8, 97, 200]) augment the objective function of subproblem i in iteration k of the forward pass
with a quadratic regularisation term:

min Ci(xi, ui, ωi) + ρki (x
′
i − x̂ki )>Qi(x

′
i − x̂ki ),

where x̂ki is the centre of the regularisation term that may vary between iterations, and ρki be-
longs to the sequence of coefficients ρ1

i , ρ
2
i , . . . , such that ρki ≥ 0 ∀k ∈ N, and limk→∞ ρ

k
i = 0.

Qi is a diagonal matrix with non-negative coefficients that is used to scale the penalties on the
different state variables. On the backward pass, the original objective function is used.

Various authors (i.e. [8, 97, 200]) report promising results, but the performance of the
method is likely to be problem-specific and dependent upon the choice of ρki and x̂ki . We conjec-
ture that this method will work well if there is a strong temporal component to the optimal state
trajectory. This is often observed in hydro-thermal scheduling problems, where the reservoir
levels (i.e. the states) follow a strong temporal pattern over the year [158]. Therefore, regular-
ising the state along this trajectory is likely to improve the rate of convergence. In contrast, the
price-state models we explore in Chapter 9 of this thesis do not follow a strong temporal pattern.
Instead, the state evolves according to an auto-regressive process. Therefore, regularising the
state to a previously visited state may hinder convergence.

2.5.5 Initialisation

Recall that each subproblem approximates the cost-to-go function via a set of cuts. However,
in the first iteration before any cuts are generated, we bound the cost-to-go variable θi in each
subproblem by some known bound (or a large negative value if we are unsure of a bound). The
goal of an initialisation phase is to cheaply construct a better approximation of the cost-to-go
function than assuming θi ≥ −M .

If the noise ωi in each subproblem i only appears in the right-hand side of the constraints,
then solving the expected-value subproblems (i.e. SPki (xi,E[ωi])) in the SDDP algorithm will
result in cuts that form a valid outer approximation. (Recall from Section 2.5.2 that the optimal
dual solution for the primal problem is feasible (but sub-optimal) for the dual problem with any
value of the right-hand side vector.)

Since we only need to solve one realisation of the noise per subproblem on the backward
pass instead of |Ωi|, each iteration of the expected-value problem will be faster than solving the
full problem, at the expense of discovering cuts that are sub-optimal.

After solving a given number of these expected-value iterations, we can revert to the original
SDDP algorithm using the discovered cuts as a good initial approximation for the cost-to-go
function. Some authors [59, 155] report good results with this technique, but the method is
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limited to subproblems where the noise only appears in the right-hand side of the constraints,
and the computational benefit will depend upon the number of possible realisations for the noise
in each subproblem.

2.5.6 Parallelism

The SDDP algorithm is highly parallelisable. This observation dates back to Pereira and Pinto
[154] who noted that the algorithm could be conducted asynchronously, with processes per-
forming iterations independently and sharing cuts periodically. Different authors [104, 164]
have proposed different methods for efficiently parallelising the algorithm. However, we choose
to outline an approach that minimises inter-process communication. We call this asynchronous

SDDP.

In our implementation, one process is designated the “master” process and the remainder
are designated as “slaves”. Each slave receives a full copy of the SDDP model and is set to
work, performing iterations. At the end of each iteration, the slave passes the master the cuts it
discovered during the iteration and receives any new cuts discovered by other slaves. The slave
also queries the master as to whether it should terminate, perform another iteration, or perform
a simulation. If the master requests a simulation (for example, to calculate a confidence interval
in order to test for convergence), the slave returns the objective value of the simulation rather
than a new set of cuts. A diagram of the process layout is shown in Figure 2.6. We benchmark
an implementation of this approach in Section 3.3.3.

Master

Slave 1 Slave 2

Figure 2.6: Structure of processes in asynchronous mode showing slaves passing new cuts to
the master (dashed arrows) and the master passing cuts to slaves (solid arrows).

2.5.7 Inexact cuts

We explained earlier how it is not always necessary to solve all of the subproblems in the
backward pass since any feasible dual can be used to construct a valid cut (at the expense of
being sub-optimal). Some authors [95, 212] have expanded upon this idea and proposed that we
terminate the solution to subproblems on the backward pass when a feasible, but sub-optimal,
solution is reached. This results in cuts that are inexact. This approach results in faster iterations
(since less time is spent solving the subproblems to optimality) but may require more iterations
before convergence. Therefore, the performance improvement is likely to be problem-specific.
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2.5.8 Average-cut vs. multi-cut

In the average-cut formulation of SDDP (i.e. the one we have described so far), we replace the
cost-to-go function with a single variable θi and add cuts that are the risk-adjusted expectation
of the next stage’s outcomes. In contrast, the multi-cut version of SDDP adds a cost-to-go
variable θj,ωji for every possible realisation in the next stage, and the expectation is calculated
in the objective rather than in the cut coefficients. (See [11, 30, 214] for details.) Therefore, the
approximated subproblem i after K iterations is:

V K
i (xi, ωi) = min

ui
Ci(x̄i, ui, ωi) +

∑
j∈i+

φi,j
∑

ωj∈Ωj

pωjθi,j,ωj

s.t. x′i = Ti(x̄i, ui, ωi)

x̄i = xi, [λi]

ui ∈ Ui(x̄i, ωi)
θi,j,ωj ≥ αki,j,ωj + 〈βki,j,ωj , x′i〉, j ∈ i+, ωj ∈ Ωj, k ∈ {1, 2, . . . , K},

where φi,j is the probability of transitioning from node i to node j in the policy graph and pωj
is the probability of sampling ωj from Ωj . The forward pass of the algorithm is identical to the
average-cut SDDP. However, on the backward pass, we add a cut for every realisation of the
next subproblem and noise. As a consequence, risk is also handled differently in the multi-cut
formulation compared to the average-cut formulation. Instead of the “change-of-probability”
approach, risk can be modelled using auxiliary variables. (See [110, 191, 199, 214] for details.)

The biggest draw-back to the multi-cut method is that, compared with the average-cut for-
mulation, it involves adding many more variables and constraints to each subproblem. However,
cut selection techniques could be applied to each cost-to-go variable independently in order to
reduce this problem [11]. Despite the larger subproblems, some authors (e.g. Zhang et al. [214])
have reported that the multi-cut version is faster than the average-cut version. This is because
the bound on the cost-to-go function using the multi-cut formulation is tighter than the average-
cut formulation. For example, the cost-to-go function at point x′i in the multi-cut formulation
is:

multi-cut(x′i) =
∑
j∈i+

φi,j ∑
ωj∈Ωj

[
pωj max

k=1,2,...,K

{
αki,j,ωj + 〈βki,j,ωj , x′i〉

}] .
In contrast, the value of the cost-to-go function at the point x′i in the average-cut formulation is:

average-cut(x′i) = max
k=1,2,...,K

∑
j∈i+

φi,j ∑
ωj∈Ωj

[
pωj

(
αki,j,ωj + 〈βki,j,ωj , x′i〉

)] .

Therefore, it is easy to show that the inequality:

multi-cut(x′i) ≥ average-cut(x′i)
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holds for all x′i. At the point in the state-space where the cuts were produced, the inequality
above holds as an equality. The performance of the average-cut formulation compared with the
multi-cut formulation depends on the relative trade-off between the gap in this inequality and
the number of additional variables and constraints added to each subproblem.

2.6 Numerical issues

Solving a real-world model via SDDP typically involves solving hundreds of thousands or even
millions of subproblems. (The models we solve in Chapter 9 involve the solution of over 200
million LPs!) In addition, these subproblems, and the SDDP solution process, have unique
characteristics that challenge commercial solvers such as CPLEX [113] and Gurobi [99]. As
a result, it is not uncommon to find: solution times that differ by 50% between these two
state-of-the-art commercial solvers (we observe this in Chapter 3); feasible models incorrectly
classified as infeasible or unbounded; and in extreme cases, incorrect solutions. In this section,
we describe some of the numerical issues associated with SDDP and review potential solutions.
We can also recommend the work of Klotz [119] as a comprehensive treatment of the issues
associated with numerical instability in mathematical optimisation.

2.6.1 Scaling

The root cause of nearly all numerical issues in mathematical optimisation is poor problem
scaling [69, 119]. Therefore, users should attempt to scale their problems to minimise the
difference in the order of magnitude in the problem coefficients (paying particular attention to
the cut coefficients). A common example is in the hydroelectricity setting, where it might be
common to state that a reservoir has a capacity on the order of 109m3 of water and a cost per
unit on the order of $10−2/m3 (a difference of 11 orders of magnitude). If we instead re-scale
the problem to consider units of million m3 (Mm3), we now have a reservoir capacity on the
order of 103Mm3 and a cost per unit on the order of $104/Mm3. This has a difference of only
one order of magnitude.

2.6.2 Tolerances

A long-standing issue in computer science is how to compare two values in floating-point arith-
metic [119]. Typically, two values a and b are said to be equal if |a − b| ≤ ε where ε is some
small positive tolerance. In the optimisation context, these tolerances are applied to ensure: that
constraints are satisfied; that a variable value is within its bounds; and that integer variables
are sufficiently close to an integer value [69]. Therefore, the constraint x ≥ 0 can really be
thought of as x ≥ −ε. In the case of most linear solvers (e.g. Gurobi [99]), it seems the default
is ε = 10−6 [119].
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Although this is a perfectly acceptable solution in general optimisation problems, numerical
tolerances can lead to counter-intuitive outcomes when the solution to one problem is used as
an input to a subsequent model. We demonstrate this in the following example.

Consider a simple linear program with two variables and three constraints:

min x + y

s.t. 10x − y ≥ 0

x ≥ 0

y ≥ 0.

(2.5)

We can decompose the problem using Benders decomposition into the first-stage problem:

min x + θ

s.t. x ≥ 0

θ ≥ 0,

(2.6)

and the second-stage subproblem:

min y

s.t. y ≤ 10x̂ [λ]

y ≥ 0,

(2.7)

where x̂ is the optimal value of x in the first stage problem. The question for the reader is: is
it possible for a feasible first-stage (i.e. Eq. 2.6) solution of x to cause infeasibility when set as
the right-hand side x̂ in the second-stage problem (i.e. Eq. 2.7)?

The intuitive answer is no. The second-stage problem has constraints such that 0 ≤ y ≤
10x, and we know from the first-stage problem that x ≥ 0. Therefore, the feasible set for y is
never empty as it always contains the value y = 0 for any feasible value for x ≥ 0. However,
given a floating-point tolerance of ε = 10−6 in Eq. 2.6, the solver may produce a (numerically)
feasible and optimal solution to Eq. 2.6 of (x, θ) = (−10−6, 0). This can (and should) be
expected by the user. An issue arises when the approximately optimal value for x is set as the
right-hand side value x̂ in Eq. 2.7. This produces a set of constraints such that:

−ε ≤ y ≤ −10−5 + ε.

As a result, Eq. 2.7 is infeasible for ε < 5 × 10−6. Since the default tolerance is ε = 10−6, it
can be the case that a (numerically) feasible solution to the Benders first-stage problem leads to
an infeasible Benders second-stage subproblem.

We (and others, e.g. [8, 116]) have frequently observed this problem in different real-world
models, using a variety of different solvers, and on different machines. However, there is a sim-
ple mitigation. The solution is to modify the forward pass of the SDDP algorithm (Algorithm 3)
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so that instead of passing the solution of x′i forward as xj , we first round the variable back onto
its domain (if it has finite bounds and the numerical solution is outside these bounds). Although
this is not guaranteed to fix the problem in all instances (it is possible to construct a much more
elaborate set of constraints that will result in infeasibility for a numerically optimal first-stage
variable that is not at one of its bounds), in our experience, it alleviates a significant cause of
numerical instability.

2.6.3 Solver choice

A critical component of the numerical stability of the SDDP algorithm is the choice of solver.
As will be seen in Chapter 3, the variance in solution time between commercial solvers such
as Gurobi [99] and CPLEX [113] on the same problem can be in excess of 50%. Moreover,
due to the scaling and tolerance issues described above, it is not uncommon to find that solvers
encounter numerical difficulties that prevent them from finding the optimal solution. In our
experience, commercial solvers such as Gurobi and CPLEX are more robust than open-source
solvers, such as Clp [44] which frequently fails to find the optimal solution. However, even
the commercial solvers are not immune to numerical error. Gurobi will occasionally return a
status Numeric, which indicates that it has encountered un-recoverable numerical difficulties,
and CPLEX will return the status CPX_OPT_INFEAS, which indicates that it solved a scaled
version of the primal problem to optimality, but when the result was un-scaled, the solution
was infeasible. We have even found bugs in Gurobi that result in sub-optimal solutions being
returned to the user but reported as optimal. (See Appendix B for details.)

Considering these issues, we highly recommend that users solve their model using different
solvers and parameters in order to compare solution times and validate the solutions. Without
performing this step when solving a new real-world model, users should be wary of the solution
they obtain.

2.6.4 Potential solutions

Finally, we note that numerical issues in optimisation are not limited to SDDP. Modern MIP
solvers such as Gurobi already include a number of techniques for counteracting numerical
issues [137]. However, many of these techniques are designed to deal with the cutting planes
that are added as part of the solution process for integer programs. Therefore, they are not used
when solving linear programs. Some of these techniques include discarding redundant cuts (e.g.
cut selection – Section 2.4), as well as discarding cuts whose coefficients differ significantly in
magnitude [137]. Many of these techniques are unexplored in the context of SDDP.
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2.7 Multiple optimal solutions

In some cases, the subproblems in an SDDP model have multiple optimal primal solutions.
For example, in hydro-thermal scheduling (a common application area), the marginal value
of water (i.e. the slope of the cost-to-go function) is sometimes equal to the marginal cost of
thermal fuel [116]. Therefore, the optimal solution can be any combination of thermal and hydro
generation [158]. This phenomenon of multiple optimal solutions occurs because the dual of the
subproblem is degenerate. Furthermore, recall that SDDP is based on Benders decomposition.
Therefore, problems that affect Benders decomposition will also affect SDDP.

In this section, we illustrate how multiple optimal primal solutions of a Benders first-stage
problem can lead to a sub-optimal solution when the policy is simulated, even after the algo-
rithm has terminated due to an optimality criterion. This issue has serious implications for
all practitioners implementing Benders decomposition, but in particular, those implementing
nested Benders decomposition in algorithms such as SDDP.

Let us consider a simple linear program that demonstrates multiple optimal solutions when
solved via Benders decomposition:

min x + y2

s.t. x ≤ 1

x − y1 = 0

y1 + y2 ≥ 0

− 3y1 + y2 ≥ −2

x ≥ 0.

(2.8)

It is apparent upon inspection that Eq. 2.8 has the optimal solution (x, y1, y2) = (0, 0, 0),
with the corresponding objective value x + y2 = 0. However, we can decompose problem Eq.
2.8 using Benders decomposition into the first-stage problem (assuming a known lower bound
on the second-stage problem of −1):

min x + θ

s.t. x ≤ 1

θ ≥ −1

x ≥ 0,

(2.9)

and the second-stage problem:

θ̄ = min y2

s.t. y1 = x̂ [λ]

y1 + y2 ≥ 0

−3y1 + y2 ≥ −2.

(2.10)
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We begin by solving the first-stage problem (Eq. 2.9). This has the unique solution (x, θ) =

(0,−1). Next, recall that in Benders decomposition, a valid lower bound for the objective of
the original problem (Eq. 2.8) is the objective of the first-stage problem. Therefore, the current
lower bound is −1. Then we solve the second-stage problem (Eq. 2.10). This has the unique
solution (y1, y2, λ) = (0, 0,−1), and an objective value of θ̄ = 0.

Using the solutions to these two subproblems, we can obtain a feasible solution to Eq. 2.8 by
combining the optimal value of x in the first-stage problem, and the optimal values of y1 and y2

in the second-stage problem. Therefore, we obtain the feasible solution (x, y1, y2) = (0, 0, 0).
As observed earlier, this is the optimal solution to Eq. 2.8.

We can also calculate an upper bound for Eq. 2.8 by summing the optimal objective value
of the first-stage problem (less the optimal value of the cost-to-go variable θ) and the optimal
objective value of the second-stage problem. This gives an upper bound for the original problem
of x+y2 = 0+0 = 0. Despite having found the optimal solution, we have not proved optimality
as the lower bound (−1) is not equal to the upper bound (0).

Therefore, we add a Benders optimality cut to the first-stage problem. These cuts have the
form:

θ ≥ θ̄k + λ̄k(x− x̂k),

where θ̄k is the objective of the second-stage problem, and x̄k is the value x takes in the optimal
solution to the first-stage problem in the kth iteration. We therefore add the cut:

θ ≥ 0 +−1(x− 0).

The first-stage subproblem is now:

min x + θ

s.t. x ≤ 1

θ ≥ −1

x + θ ≥ 0

x ≥ 0.

(2.11)

There are multiple optimal primal solutions to this problem as any solution:

(x, θ) ∈ {(a,−a) : a ∈ [0, 1]}

is an optimal solution to the primal first-stage problem with an objective value of 0.

We start a new Benders iteration by re-solving the new first-stage problem. This has a non-
unique solution; however, if we assume that the solver hot-starts from the previous solution
value, we obtain the solution (x, θ) = (0, 0). The objective value of the subproblem is 0, which
is therefore also a valid lower bound for the original problem.

As before, we solve the second-stage problem and obtain the unique solution (y1, y2, λ) =
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(0, 0,−1), and an objective value of θ̄ = 0. From this, we calculate an upper bound for the
original problem of 0, which is also equal to the lower bound. Therefore, the Benders decom-
position algorithm terminates with the optimal solution (x, y1, y2) = (0, 0, 0) and the optimal
objective value of 0.

Now assume that we take the converged problem and attempt to reconstruct the solution.
We solve the first-stage problem, but this time the solver might return the (optimal) solution
(x, θ) = (1,−1). The different solution may result from the use of a different solver, different
solve parameters, different hot-start solutions, numerical error, or the use of a non-deterministic
solution algorithm. The solution is also feasible and provides a lower bound to the original
problem that is equal to the optimal objective value (as expected). Therefore, we set x̂ = 1 and
solve the second-stage problem. This has the optimal solution (y1, y2, λ) = (1, 1, 1).

By combining the solutions of the two stage problems, we obtain a feasible solution to the
original problem of (x, y1, y2) = (1, 1, 1). This has an objective value of 2 and is sub-optimal.

In other words, taking an optimal first-stage decision in a converged Benders decomposition
can lead to a sub-optimal solution in the second-stage problem. In this example, it is trivial to
observe that the solution is sub-optimal. In a more complicated setting such as SDDP, it may
not be so easy to observe. This has a serious implication for SDDP and we cannot understate
its importance.

Remark 1. When we simulate an “optimal” policy, we may obtain a sequence of sub-optimal

controls, even in a converged, deterministic model.

As a consequence, the decision-rule at each node i should be considered to be a random
variable. The Benders optimality cuts alone (as represented by their variable coefficients and
intercept) are not sufficient to reproduce the optimal control given an incoming state variable
xi and realisation of the noise ωi. This conflicts with the widespread belief that it is possible to
pre-compute the cuts and then use them as an operational policy in the future. (For examples
of this, see Philpott and Pritchard [159] and Asamov and Powell [8]. We highlight these papers
to demonstrate the belief, rather than as a comment on any of the individual papers.) More-
over, authors such as Liu et al. [129], Rougé and Tilmant [185], and Kapelevich [116] have
observed this problem in real-world instances. Rougé and Tilmant [185] called the tendency of
the simulated realisations of the policy produced by the SDDP algorithm to have unstable and
unpredictable behaviour with small variations in the input “algorithmic chaos”.

Degeneracy in other settings

Dual degeneracy is also found in other cutting plane methods such as Gomory’s fractional
cutting plane method for solving integer linear programs [9, 213]. As a solution, Zanette et al.
[213] propose a lexicographic simplex method for solving the linear subproblems. Their method
ensures that the same optimal basis is obtained each time the algorithm is run, ensuring that we
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always obtain the same optimal solution. They found the method to be effective and stable in
practice.

Degeneracy is also discussed in the context of Benders decomposition in a review paper
by Rahmaniani et al. [173]. However, the literature is focused on the problem of choosing a
strong cut from a set of feasible cuts when the primal is degenerate (i.e. there are multiple dual
solutions). Aside from the papers mentioned above (i.e. [116, 129, 185]), we are unaware of any
work that recognises that simulating a converged policy can result in a sub-optimal sequence of
controls. (It is also interesting to note that few of the computational techniques for dealing with
primal degeneracy have flowed through into the SDDP literature; however, it is an area that we
leave to future research.)

2.8 Summary

In this chapter we introduced SDDP, the main algorithm that we use in this thesis to solve multi-
stage stochastic optimisation problems. In particular, we highlighted four technical assumptions
that restrict the class of multistage stochastic optimisation problems that SDDP can solve. We
also conducted a review of the current literature that represents the state-of-the-art for SDDP
implementations. A summary of the computational improvements is presented in Figure 2.2. In
the next chapter we introduce SDDP.jl, a software package that we have developed to solve
multistage stochastic optimisation problems using SDDP.
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Chapter 3

SDDP.jl: a Julia package for stochastic
dual dynamic programming

In the previous chapter, we introduced stochastic dual dynamic programming (SDDP) as a so-
lution technique for solving multistage stochastic optimisation problems. In this chapter we
present SDDP.jl, an open-source library we have developed that implements the SDDP al-
gorithm. SDDP.jl is built upon JuMP, an algebraic modelling language in Julia. This en-
ables SDDP.jl to have a high-level interface for the user, while simultaneously providing
performance that is similar to implementations in low-level languages. We benchmark the per-
formance of SDDP.jl against a C++ implementation of SDDP for the New Zealand Hydro-
Thermal Scheduling Problem. On the benchmark problem, SDDP.jl is approximately 30%
slower than the C++ implementation. However, this performance penalty is small when viewed
in context of the generic nature of the SDDP.jl library compared with the single-+purpose
C++ implementation.

3.1 Introduction

Solving any mathematical optimisation problem requires four steps: the formulation of the
problem by the user; the communication of the problem to the computer; the efficient compu-
tational solution of the problem; and the communication of the computational solution back to
the user. Over time, considerable effort has been made to improve each of these four steps for a
variety of problem classes. For example, consider the evolution from early file formats such as
MPS [141] to modern algebraic modelling languages embedded in high-level languages such as
JuMP [67], or the 73-fold speed-up in solving difficult mixed-integer linear programs in seven
years by Gurobi [100].

However, the same cannot be said for stochastic problem classes. This is particularly true of
multistage stochastic optimisation problems, which are the focus of this thesis. As discussed in
Chapter 1, there is considerable debate about how to best formulate a stochastic program [166,

53
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167]. Moreover, when it comes to communicating the problem to the solver, various file formats
have been proposed [32, 82], but owing to the lack of agreement about the problem formulation,
acceptance of these is not widespread. Instead, what happens is the development of an ad-

hoc, problem-specific format that is often tightly coupled to individual solver implementations
on a case-by-case basis. The visualisation of a stochastic policy is also difficult due to the
high-dimensionality of the state- and control-spaces and the inherent uncertainty. Thus, policy
visualisation is also problem-specific.

Where progress has been made however, is in the development of efficient computational
solution algorithms. The state-of-the-art solution technique for convex multistage stochastic
optimisation problems is stochastic dual dynamic programming (SDDP), which we introduced
in the previous chapter. Since the seminal work of Pereira and Pinto [154], SDDP (and its
variants) has been widely used to solve a number of problems in both academia and industry.
However, until recently, no open-source, generic implementations of the algorithm existed in
the public domain. (We discuss these implementations in Section 3.5.) Instead, practitioners
were forced to code their own implementations in a variety of languages and styles. Research
implementations have been reported in a variety of languages, including AMPL [92], C++
[104, 159], GAMS [38, 150], Java [8], and MATLAB [152], as well as in commercial products
such as the seminal SDDP [169], QUASAR [172], and DOASA [162]. In our opinion, this
“re-invention of the wheel” has limited the adoption of the SDDP algorithm in areas outside the
electricity industry (which is the focus of most researchers) since there is a large up-front cost
to development. Moreover, many researchers develop and test new algorithmic improvements
without being able to easily compare their ideas against other implementations or the current
state-of-the-art.

This chapter presents SDDP.jl – a Julia package for solving multistage stochastic opti-
misation problems using SDDP. The chapter is laid out as follows. First, in Section 3.2, we
introduce SDDP.jl and explain many of its basic features by working through a simple ex-
ample. Then, in Section 3.3, we detail some of the more advanced features of SDDP.jl. In
Section 3.4, we benchmark SDDP.jl against a C++ implementation of the SDDP algorithm for
the New Zealand Hydro-Thermal Scheduling problem. Finally, we conclude with a comparison
of SDDP.jl to other libraries in Section 3.5.

This chapter is not intended to be a comprehensive tutorial for SDDP.jl. Instead, readers
are directed to https://github.com/odow/SDDP.jl for source-code, examples, and
documentation.

3.2 Example: the air conditioner problem

To illustrate the basic features of SDDP.jl, we consider the air conditioner problem proposed
by Papavasiliou [151]. In this problem, the manager of a factory seeks a production plan for
producing air conditioners over a period of three months. During standard working hours, the

https://github.com/odow/SDDP.jl


Chapter 3. SDDP.jl 55

factory can produce 200 units per month at a cost of $100/unit. Unlimited overtime can be
scheduled; however, the cost increases to $300/unit during those hours. In the first month, there
is a known demand of 100 units. However, in each of months two and three, there is an equally
likely demand of either 100 or 300 units. Air conditioners can be stored between months at a
cost of $50/unit, and all demand must be met.

We now walk through each of the four steps in the solution process, beginning with the
problem formulation.

3.2.1 Formulating the problem

We can formulate the air conditioner problem as a multistage stochastic optimisation problem.
It has three stages – one for each month of operation. This can be represented by the linear
policy graph shown in Figure 3.1.

Figure 3.1: Policy graph of the air conditioner problem.

We now identify the states, controls, and noise terms in the model. There is one state variable
in the model: xt, the quantity of air conditioners in storage at the start of stage (i.e. month) t.
As the policy graph is linear, xt can also be thought of as the quantity of air conditioners in
storage at the end of stage t− 1. Therefore, we have x′t = xt+1 for t = 1, 2. There is one noise
in the model: ωt, the demand for air conditioners in month t. In addition, there are three control
variables:

1. pt: the number of air conditioners produced during standard working hours in month t;
2. ot: the number of air conditioners produced during overtime in month t; and
3. st: the number of air conditioners sold1 in month t.

We can formulate each subproblem in the policy graph indexed by t = 1, 2, 3 as:

SPt : Vt(xt, ωt) = max
pt,ot,st,xt+1

100pt + 300ot + 50xt+1 + Eωt+1 [Vt+1(xt+1, ωt+1)]

s.t. xt + pt + ot − st = xt+1

st = ωt

0 ≤ pt ≤ 200

xt+1, ot, st ≥ 0,

where V4(·, ·) = 0. Although air conditioners are discrete, to maintain convexity for SDDP we
solve the LP relaxation. However, as we shall later see, the solution is naturally integer. In each

1In the following formulation, the sales are trivially equal to the demand. We include an explicit control variable
for the sales in order to demonstrate some aspects of SDDP.jl.
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stage t, ωt is independently sampled from a finite discrete distribution so that:

ω1 =
{

100, with probability 1,

ωt =

100, with probability 0.5

300, with probability 0.5
for t = 2, 3.

The root node of the policy graph has the initial condition x1 = 0. Therefore, the full optimisa-
tion problem faced by the factory manager is:

max
π

E ω1 [V1(0, ω1)] . (3.1)

In the next section, we describe how to communicate the formulation of the subproblems
SPt to SDDP.jl.

3.2.2 Communicating the problem to the solver

In order to introduce SDDP.jl, we must first introduce JuMP [67], an algebraic modelling
language for the Julia programming language [28] that we use as the basis for creating and
manipulating the subproblems in the SDDP algorithm. JuMP supports a wide range of problem
classes including linear, mixed-integer, conic-quadratic, and nonlinear. In particular, a large
effort has been placed on abstracting multiple steps in the typical optimisation modelling pro-
cess in a way that is open to extension by third parties. This has allowed us to create an SDDP
modelling library that builds on the functionality of both JuMP and Julia. The expressiveness of
JuMP’s modelling syntax is available to the user with minimal implementation effort, while Ju-
lia’s multiple dispatch, parallelism, and macro-programming features enable a fast, yet generic,
implementation of the SDDP algorithm.

Overview Before we dive into the specifics, we provide the reader with a brief overview of
the design behind the user-interface of SDDP.jl. The driving principle is to represent each
subproblem SPt as a JuMP model parameterised by the incoming state variable xt and the
realisation of the stagewise-independent random variable ωt, staying as close as possible to the
formulation of SPt described above. This is achieved by extending some of the features of JuMP
to introduce state variables, and to allow random variables in the right-hand side of constraints
and in the objective. Where new methods and macros have been added (for example, adding
state variables), we have tried to stay close to the syntactic feel of JuMP. These modifications
typically produce standard JuMP constructs that are visible to the user (for example, a state
variable is just a JuMP variable), along with some additional SDDP specific information that is
hidden from the user (for example, how to link state variables between subproblems). Behind
the scenes, SDDP.jl handles the cost-to-go function in the objective, manages the realisations



Chapter 3. SDDP.jl 57

of the random variables, and passes the values of the state variables between subproblems.
Finally, due to technical reasons, SDDP.jl requires three new assumptions in addition to

assumptions (A1)–(A4) outlined in the previous chapter. These are:

(A5) for each node i ∈ N , the noise ωi only appears in the right-hand side of the constraints in
the transition function Ti and feasibility set Ui, but not as a coefficient;2

(A6) every subproblem i ∈ N is Hazard-Decision; and
(A7) the policy graph G is Markovian.3

We now describe how to communicate the formulation of the air conditioner subproblems
to SDDP.jl. We give the complete code as an appendix item in Listing C.1. However, before
we can run the example, we need to install SDDP.jl (this requires Julia 0.5 or later):

julia> Pkg.clone("https://github.com/odow/SDDP.jl")

The appendix example can be run by saving the file to the disk, opening a Julia REPL, and then
running:

julia> include("path/to/airconditioner/file")

In the remainder of this section, we walk through the file and explain points of interest in
Listing C.1.

Loading packages First, we load the relevant packages needed by the example: SDDP, JuMP,
and Clp.

using SDDP, JuMP, Clp

Users are free to use any of the other solvers in the JuliaOpt ecosystem that support MathProg-
Base instead of Clp. (See Dunning et al. [67] for more details.)

The SDDPModel object The core type in SDDP.jl is the SDDPModel object. This stores
a single JuMP model for each subproblem, as well as the information needed to parameterise
each model based on the incoming state variable xt and realisation of the random variable ωt. It
also stores other information, including the linkages between subproblems. If the policy graph
is linear, then the constructor for the SDDPModel object has the following form:

m = SDDPModel(keyword arguments...) do sp, t

... subproblem definition ...

end

2Developments in the library since the writing of this thesis mean that this assumption is no longer needed.
3More exotic policy graphs, while permissible from a theoretical perspective, are not yet solve-able using

SDDP.jl.
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There are two key features to discuss. First, we describe the keyword arguments....
There are many optional keyword arguments which we shall not discuss as they are not neces-
sary for our simple example. However, the four given in Listing C.1 are required. They are:
stages, the number of stages in the model; objective_bound, a known lower bound
(if minimising) for every subproblem; sense, the optimisation sense :Min or :Max; and
solver, any MathProgBase compatible solver.

Second, the unusual do sp, t ... end syntax is a Julia construct that is equivalent
to writing:

function foo(sp::JuMP.Model, t::Int)

... subproblem definition ...

end

m = SDDPModel(foo, keyword arguments...)

where foo(sp, t) is a function that takes an empty JuMP model sp and the stage t and
builds the subproblem SPt using a mix of JuMP functionality and SDDP.jl-specific functions.
We now describe how to construct the subproblem definition.

Control variables sp is a standard JuMP model. Therefore, the user is free to add any JuMP
variables to the model via the @variable and @variables macros. In the air conditioner
problem, we add: the number of units to produce during standard production hours p; the
number of units to produce during overtime production o; and the number of air conditioners
to sell s:

@variables(sp, begin

0 <= p <= 200

o >= 0

s >= 0

end)

All these control variables are non-negative, and the standard production capacity p has an
upper bound of 200 units.

State variables SDDP.jl provides a new macro called @state that can be used to add state
variables to the subproblem sp. This macro is a variant of the JuMP @variable macro with
a few differences. It takes three arguments. The first argument is the JuMP model sp. The
second argument is an expression for the outgoing state variable (i.e. xt+1) and can be any valid
syntax for the second argument of the JuMP @variable macro (e.g. specifying upper and
lower bounds). The third argument is for the incoming state variable (i.e. xt) and must be a
name for the incoming variable, followed by ==, and then the value of the state variable in the
first stage (i.e. x1). For the air conditioner problem, we can create the state variable xt as:
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@state(sp, xtp1 >= 0, xt == 0)

This will add two standard JuMP variables (xtp1 and xt) to the model sp that are visible to
the user, as well as some additional information that is hidden from the user describing how to
link the value of xtp1 (i.e. xt+1) in stage t to xt (i.e. xt) in stage t+ 1. The reader should note
that the syntax of the third argument is how we specify the value of the state variable at the root
node (i.e. xR). It does not enforce the constraint xt = 0 in all stages. The following is also valid
syntax and demonstrates how the index i can be shared between ytp1 and yt:4

y1 = [0.0, 1.0] # initial value

@state(sp, 0 <= ytp1[i=1:2] <= 1, yt == y1[i])

This code will add four variables to the JuMP model sp: ytp1[1], ytp1[2], yt[1], and
yt[2]. In constraints and in the objective (detailed below), state variables (i.e. xt and xtp1)
behave just like any other JuMP variable.

Constraints The user is also free to add any arbitrary JuMP constraint via the @const-

raint macro. For the air conditioner problem, we add the balance constraint that the number
of air conditioners in storage at the end of a month xtp1 is equal to the number in storage at
the start of the month xt, plus any production p and overtime production o, less any sales s:

@constraint(sp, xtp1 == xt + p + o - s)

Right-hand side uncertainty SDDP.jl supports random variables in the right-hand side
of constraints.5 Instead of using @constraint to add a constraint with a random variable,
SDDP.jl provides the macro @rhsnoise. This macro takes three arguments. The first is the
JuMP model sp. The second is a keyword argument of the form name = realisations,
where name is an arbitrary name for the random variable and realisations is a vector
containing the finite discrete list of realisations that the random variable can take. In the air
conditioner problem, these realisations are the singleton 100 in stage t = 1, and either 100 or
300 in stages t = 2 and t = 3. The third argument is any valid JuMP @constraint syntax
that contains name as part of the right-hand side term (i.e. not a variable coefficient). For the
air conditioner problem, the agent must sell exactly the quantity of units demanded. Therefore,
we add the @rhsnoise constraint:

D = [ [100], [100, 300], [100, 300] ]

@rhsnoise(sp, w=D[t], s == w)

4This construct will be familiar to users of JuMP.
5As noted before, SDDP.jl does not support uncertainty in the constraint coefficients. This is a known

limitation and will hopefully be resolved in a future release.
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D[t] is the list of possible demand realisations in stage t. (Note that we use t which
was defined in the SDDPModel Object section.) We can set the probability of the demand
realisations in stage t using the setnoiseprobability! function:

P = [ [1.0], [0.5, 0.5], [0.5, 0.5] ]

setnoiseprobability!(sp, P[t])

In this example, we used a list of lists to store the realisation and probability data in a
compact manner. However, the following is also valid:

if t == 1

@rhsnoise(sp, w=[100], s == w)

setnoiseprobability!(sp, [1.0])

else

@rhsnoise(sp, w=[100, 300], s == w)

setnoiseprobability!(sp, [0.5, 0.5])

end

Readers should note that this use of an if statement can be used more generally to conditionally
add stage-specific features to the subproblems.

The stage-objective All that remains is to define the objective of the subproblem. SDDP.jl
handles the F[Vt+1(xt+1, ωt+1)] term behind the scenes, so the user only has to provide the
stage-objective via the @stageobjective macro:

@stageobjective(sp, 100 * p + 300 * o + 50 * xtp1)

We now describe how to solve the model and visualise the solution.

3.2.3 Solving the problem

As we have previously mentioned, one area in which stochastic programming has made sig-
nificant progress is in the efficient computational solution of the problem. SDDP.jl includes
many of the state-of-the art features that have appeared in the literature. (We discussed these in
the previous chapter.) In addition, we heavily utilise Julia’s type-system and ability to overload
generic methods in order to provide an interface that is extensible by the user without them
having to modify the package’s source-code. We briefly summarise three of the most important
solution features of SDDP.jl but elaborate upon them in Section 3.3.

1. User-defined cut selection routines.

Without modifying the SDDP.jl source-code, users are able to define new cut selection
heuristics (see Section 2.4) to reduce the size of the subproblems.
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2. User-defined risk measures.

Without modifying the SDDP.jl source-code, users are able to define new risk measures
(see Section 1.3) that seamlessly integrate with the entire SDDP.jl library. This func-
tionality has been used by Philpott et al. [163] to develop a distributionally robust SDDP
algorithm without having to implement the full SDDP algorithm.

3. Parallelism.

SDDP.jl leverages Julia’s built-in parallel functionality to perform SDDP iterations in
parallel (see Section 2.5.6). SDDP.jl has been successfully scaled from the single core
of a laptop to tens of cores in high-performance computing environments without the user
needing to modify a single line of code.

Returning to the air conditioner problem, we can solve it using the SDDP algorithm via the
solve method:

status = solve(m, max_iterations=10)

There are many different options that can be passed to the solve command, so in the interests
of conciseness, we omit them here. However, the argument max_iterations causes the
algorithm to terminate after the provided number of SDDP iterations have been conducted.
Once the solution process has terminated, we can query the lower bound of the solution using
the function getbound(m). This returns the optimal objective bound (which can be verified
by solving the deterministic equivalent) of $62,500. status is a symbol describing why the
algorithm terminated. In this example, it will be :max_iterations.

3.2.4 Understanding the solution

Unlike deterministic mathematical programming, SDDP does not provide a solution containing
an explicit optimal value for every variable. Instead, it constructs a decision-rule for each node
of the policy graph in the form of an optimisation problem. To obtain the optimal control for a
stage, the user sets the value of the incoming state variable xt and the realisation of the random
variable ωt, then solves the approximated optimisation program. It can be difficult to understand
the policy due to the uncertainty and the high dimensionality of the state- and control-spaces.
Therefore, one commonly used approach is Monte Carlo simulation. In SDDP.jl, this can be
done using the simulate function:

sims = simulate(m, 40, [:xtp1, :p, :o, :s])

The first argument is the SDDPModel m. The second argument is the number of iid replications
to simulate (in this case, 40), and the third argument is a list of variables to record the value of
at each stage. For the air conditioner problem, we record xtp1, the number of air conditioners
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in storage at the end of stage t, as well as the three control variables: standard production p,
overtime production o, and sales s. sims is a vector of dictionaries (one element for each
simulation) that can be manipulated or saved to a file for later analysis. For example, the user
can query the number of units produced during standard production hours during the second
month in the tenth Monte Carlo replication by:

julia> sims[10][:p][2]

In Figure 3.2, we plot four of the Monte Carlo replications (chosen because they sample
different demand realisations) for the four variables recorded by simulate. In all scenarios,
200 units are produced during normal production hours during the first stage (Figure 3.2b). This
is despite the fact that the demand of 100 units is known ahead of time. Therefore, 100 units are
in storage at the end of the first stage (Figure 3.2c). If the demand (Figure 3.2a) is high (i.e. 300
units) in the second stage, then production remains at 200 units per stage. In addition, 100 units
are sold from storage to meet the demand of 300 units. If demand is low (i.e. 100 units) in the
second stage, then standard production drops to 100 units and no units are sold from storage. In
all scenarios, there is no overtime during the first two stages (Figure 3.2d).

At the beginning of the third stage, the system can be in one of two states: 100 units in
storage if the previous stage’s demand was 100 units, or zero units in storage if the previous
stage’s demand was 300 units. If there are zero units in storage and the demand in the third
stage is high, then the optimal solution is to produce 200 units during standard production
hours and 100 units during overtime hours. In all other cases, it is possible to meet the demand
using a combination of the units in storage and standard production.

3.3 Unique design features

In this section, we provide a deeper discussion of some of the unique features of SDDP.jl.

3.3.1 Cut oracles

As the SDDP algorithm progresses, many cuts (typically thousands) are added to each sub-
problem. This increases the computational effort required to solve each subproblem. In ad-
dition, many of the cuts created early in the solution process may be redundant once addi-
tional cuts are added. This issue has spurred a vein of research into heuristics for choosing
cuts to keep or remove. (We discussed this method of cut selection in Section 2.4.) To fa-
cilitate the development of cut selection heuristics, SDDP.jl features the concept of a cut

oracle associated with each subproblem. A cut oracle has two jobs: it should store the com-
plete list of cuts created for that subproblem; and when asked, it should provide a subset of
those cuts to retain in the subproblem. This can be done by defining a new subtype of the
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Figure 3.2: Four simulations (each sampling a different demand scenario) of the air conditioner
problem using the optimal policy. Red lines sample high demand in stage two (ω2 = 300 units).

abstract type AbstractCutOracle (defined in SDDP.jl), and then overloading two meth-
ods: SDDP.storecut! and SDDP.validcuts. To illustrate this feature, we now give
the code to implement a new cut oracle that is not implemented in SDDP.jl. This oracle only
stores theN most recently discovered cuts (called the last-cuts strategy in de Matos et al. [56]).6

First, we define a new Julia type that is a subtype of the abstract type AbstractCutOracle
defined by SDDP.jl:

struct LastCutOracle{N} <: SDDP.AbstractCutOracle

cuts::Vector{SDDP.Cut}

end

LastCutOracle(N::Int) = LastCutOracle{N}(SDDP.Cut[])

LastCutOracle has the type parameter7 N to store the maximum number of the most-recent
cuts to return. The type has the field cuts to store a vector of discovered cuts. More elaborate
cut selection heuristics may need additional fields to store other information. Next, we overload
the SDDP.storecut! method. This method should store the cut c in the oracle o so that it
can be queried later. In our example, we append the cut to the list of discovered cuts inside the
oracle:

function SDDP.storecut!{N}(o::LastCutOracle{N},

m::SDDPModel, sp::JuMP.Model, c::SDDP.Cut)

6Readers should note that this is not necessarily an oracle that one would want to use.
7A Julia construct.
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push!(o.cuts, c)

end

Lastly, we overload the SDDP.validcuts method. In our example, the strategy is to
return the N most recent cuts. Therefore:

function SDDP.validcuts{N}(o::LastCutOracle{N})

return o.cuts[max(1,end-N+1):end]

end

By creating a new type that is a subtype of AbstractCutOracle, users can leverage Ju-
lia’s multiple dispatch mechanisms to easily integrate new functionality into the library without
having to dive into the internals. At present, only the default behaviour of no cut selection and
the Level One cut selection method [56] have been implemented. The Level One cut selection
oracle can be created as follows:

cut_oracle = LevelOneCutOracle()

Cut oracles can be added to the model with the cut_oracle keyword in the SDDPModel
constructor.8 For example:

m = SDDPModel(

# ... other keyword arguments ...

cut_oracle = LastCutOracle(500)

) do sp, t

# ... subproblem definition will go here ...

end

Due to the design of JuMP, we are unable to delete cuts from the model.9 Therefore,
selecting a subset of cuts involves rebuilding the subproblems from scratch. The user can
control the frequency by which the cuts are selected and the subproblems rebuilt with the
cut_selection_frequency::Int keyword argument of the solve method. Frequent
cut selection (i.e. when cut_selection_frequency is small) reduces the size of the sub-
problems that are solved but incurs the overhead of rebuilding the subproblems. However,
infrequent cut selection (i.e. when cut_selection_frequency is large) allows the sub-
problems to grow large (by adding many constraints), leading to an increase in the solve time of
individual subproblems. Ultimately, this will be a model-specific trade-off. As a rule of thumb,
simpler (i.e. few variables and constraints) models benefit from more frequent cut selection
compared with complicated (i.e. many variables and constraints) models.

8Readers may argue that a cut oracle belongs to the solution process rather than the model object. However,
this design is necessary to satisfy some of Julia’s quirks regarding type stability.

9This may be rectified in future re-writes of JuMP.
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3.3.2 Risk measures

Recently, significant efforts have been made to incorporate risk in the SDDP algorithm [121,
122, 160, 161, 189, 191]. In SDDP.jl, we use the “change-of-probability” approach of
Philpott et al. [160] that we outlined in Section 1.3. For each risk measure, we create a function
that takes the K realisations of the random variable {zk}K1 with corresponding probabilities
{pk}K1 and returns the risk-adjusted probability distribution {ξk}K1 . For example, when min-
imising, the worst-case risk measure is:

ξk =


1, k = arg max

i∈{1,2,...,K}
{zi}

0, otherwise.

(3.2)

In a manner similar to the cut oracle design, SDDP.jl allows a core function (SDDP.m-
odifyprobability!) to be overloaded to allow the development and testing of new risk
measures. The modfiyprobability! function takes a number of arguments. The first is
an instance of the risk measure. The second is a vector of Float64 corresponding to the risk-
adjusted probability of each scenario. This vector should be modified in-place by the function.
The third argument is a vector of the un-adjusted probabilities (i.e. the original probability
distribution). The fourth argument is a vector of observations (one for each realisation of the
noise ω). The fifth and sixth arguments are the SDDPModel and JuMP subproblems to allow
for other risk measures that require additional information.

To illustrate this feature, we give the code necessary to create the worst-case risk measure.
Our implementation assumes that the worst outcome in observations has a positive proba-
bility of occurring. A proper implementation accounting for outcomes with zero probability is
too verbose for this simple example. The worst-case risk measure places all of the probability
on the scenario with the greatest objective value if minimising, or the smallest objective value
if maximising:

struct WorstCase <: SDDP.AbstractRiskMeasure end

function SDDP.modifyprobability!(::WorstCase,

riskadjusted_distribution,

original_distribution::Vector{Float64},

observations::Vector{Float64},

m::SDDPModel,

sp::JuMP.Model

)

if getsense(sp) == :Min

# indmax returns the index of the maximum element

idx = indmax(observations)

else
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# indmin returns the index of the minimum element

idx = indmin(observations)

end

# reset the distribution

riskadjusted_distribution .= 0.0

# place all the weight on the worst outcome

riskadjusted_distribution[idx] = 1.0

end

After defining this code, the user could use risk_measure = WorstCase() in their
definition of the SDDPModel object as if it were a risk measure defined in SDDP.jl. This
again highlights one of the core benefits of building an SDDP framework in Julia: that the user
can easily extend the underlying library without modifying the library itself.

3.3.3 Parallelisation

In the previous chapter, we described how the SDDP algorithm is amenable to parallelisa-
tion. In particular, we described an asynchronous solution scheme that minimises the amount
of inter-process communication. In SDDP.jl, this functionality can be controlled by the
solve_type keyword to the solve method. For example, solve_type=Serial() will
solve the problem utilising one process, while solve_type=Asynchronous() will utilise
all of the processes available to Julia. Typically, users should start Julia with the same number
of processes as they have cores. For example, on a typical 4-core workstation with 16Gb of
RAM, we find starting Julia with julia -p 4 works the best.

To demonstrate the parallel scaling properties of SDDP.jl, we solve an instance of the
POWDER model from Chapter 8 (the details of the model are unimportant at present) for 2000
iterations, using a virtual machine with 20 Intel E5-2698 CPUs and 64GB of memory, for
different numbers of Julia processes. The results are plotted in Figure 3.3. The dashed grey line
represents perfect scaling (i.e. doubling the number of processes halves the solution time).

These results show that doubling the number of slaves from 1 to 2 more than halves the
solution time. This is unexpected since we would expect that there is some overhead. However,
we repeated the experiment a number of times and always observed identical results. As we
double the number of slaves to 4, and then to 8 processes, the solution time approximately
halves each time as expected. However, once we add more than eight workers, the solution
time begins to plateau. This indicates that there is a bottleneck in the system. One bottleneck
could be due to a limitation on the speed of communication between processes (since we used
a virtual machine, this can vary), or because the master process is becoming a bottleneck in the
system: it must collect and then distribute the cuts from each slave at every iteration, as well as
writing the cuts to file and deciding whether to terminate the algorithm.
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Figure 3.3: Solution time against the number of slave processes showing actual (solid) and ideal
(dashed) scaling rates.

3.3.4 Other extensions

Since SDDP.jl is built upon JuMP, arbitrary nonlinear convex subproblems are supported by
SDDP.jl. This enables the user to solve problems incorporating quadratic objectives such as
the problem of Guan and Philpott [93].

In addition, one core goal of Dunning et al. [67] in designing JuMP was to make it exten-
sible. Therefore, JuMP contains functionality for injecting user-code into many of the points
in the solution process. By building on top of JuMP and Julia, we have leveraged these fea-
tures to allow other authors to implement features on top of SDDP.jl that seamlessly integrate
into the existing infrastructure. The first such example of this is the Julia package SDDiP.jl
[117], which implements the method of Zou et al. [215] to solve multistage stochastic integer
programs. We believe the modularity and extensibility of the SDDP.jl framework is a rich
starting point for future researchers to build upon.

3.4 Benchmark: hydro-thermal scheduling

In Section 3.2, we showed how to solve a multistage stochastic optimisation problem using
SDDP.jl. In this section, we use a more complicated model to benchmark the performance of
SDDP.jl against an existing C++ implementation of the SDDP algorithm.

The most common application of the SDDP algorithm (dating back to the original paper
of Pereira and Pinto [154]) is the Hydro-Thermal Scheduling Problem (HTSP). In the HTSP,
an operator owns a number of hydro-reservoirs that are connected by a series of rivers and
hydroelectric generators. Water can be released from the reservoirs and directed through hydro-
electric turbines to produce electricity. However, future inflows into the reservoirs from rainfall
or snow-melt are uncertain. Any unmet electricity demand is met by thermal generation. There-
fore, the objective of the operator is to find a strategy for controlling the release of water over a
planning horizon that minimises the total cost of thermal generation.

Software for solving this problem using the SDDP algorithm has been successfully com-
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mercialised by the Brazilian company PSR [169].10 However, for this chapter, we used DOASA,
a C++ implementation of the SDDP algorithm for the New Zealand HTSP.11 In contrast to the
generic SDDP.jl, DOASA is hard-coded to solve the New Zealand HTSP. This allows it to
gain some efficiency over SDDP.jl. Our copy of DOASA was provided by the Electric Power
Optimisation Centre at the University of Auckland, New Zealand.

To implement the New Zealand HTSP in SDDP.jl, we referred only to the description of
the model given in Philpott and Pritchard [159]. At no point did we refer to any of the C++
source-code. We now test the correctness and performance of SDDP.jl by comparing it with
DOASA. In the following, all experiments were conducted on a Windows 7 machine with an
Intel i7-4770 CPU and 16GB of memory, and all solvers used the default parameter settings.

3.4.1 Correctness

To test the correctness of our SDDP.jl implementation of the HTSP model, five determin-
istic instances of the New Zealand HTSP were created using historical inflows, demand, and
pricing for the years 2005 – 2009. These problems were solved for 100 SDDP iterations using
DOASA and SDDP.jl. In all years, both implementations converged to identical lower bounds
(Table 3.1). This experiment strongly suggests that the two implementations of the model and
deterministic SDDP algorithm are functionally equivalent.

Year
2005 2006 2007 2008 2009

DOASA 493,125,281 423,420,729 575,859,349 446,507,222 340,096,459
SDDP.jl 493,125,281 423,420,729 575,859,349 446,507,222 340,096,459

Table 3.1: Lower bound ($) after 100 SDDP iterations.

To test the correctness of SDDP.jl and DOASA on a stochastic problem, an instance of
the New Zealand HTSP was created using historical inflows from 1970–2007 and demand and
pricing data from 2008. This problem was solved for 5000 SDDP iterations using both imple-
mentations. In Figure 3.4, we plot the lower bound against the number of iterations for both im-
plementations. Due to the different random number generators used by DOASA and SDDP.jl,
different random inflows are sampled. This can lead to a difference in the bound at any par-
ticular iteration. However, we see clear evidence that both implementations converge towards
an identical bound at approximately the same rate. When combined with the deterministic ex-
periments, there is very strong evidence that the SDDP algorithms in DOASA and SDDP.jl

are correct, and that the implementations of the New Zealand HTSP are equivalent. To the best

10Somewhat confusingly, the software is named SDDP.
11To add to the naming confusion, the term DOASA was also used to refer to a class of algorithms related

to SDDP (the algorithm) by Philpott and Guan [162]. We shall refer to DOASA the software by stylising it in
typewriter font.
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of our knowledge, this is the first time that the correctness of an SDDP implementation in a
real-world setting has been demonstrated in the literature.
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Figure 3.4: Convergence of the lower bound for DOASA (solid) and SDDP.jl (dashed) on a
stochastic instance of the New Zealand HTSP.

3.4.2 Performance

To compare the performance of SDDP.jl and DOASA, an instance of the New Zealand HTSP
was created using 38 years of historical inflows (1970–2007), with data from 2008 for demand
and thermal pricing. Four different solver configurations were setup: DOASA using Gurobi
version 6.5.0 [98], SDDP.jl using Gurobi version 6.5.0, SDDP.jl using Gurobi version 7.0.0
[99], and SDDP.jl using CPLEX version 12.6.1 [113]. The problem was solved 20 times
for each of the configurations. The SDDP algorithm was terminated after 500 cuts had been
generated for the first subproblem.

In Table 3.2, we summarise the results of these experiments. There are four columns of
interest: External, JuMP, SDDP, and Total. In the External column, we report the time spent
in the external solver libraries (i.e. CPLEX and Gurobi) solving the subproblems. In the JuMP

column, we report the time that SDDP.jl spends in calls to the JuMP method solve, ex-
cluding the call to the external solver. This measures the overhead of solving the problem via
the generic JuMP interface rather than directly through the solver API. In the SDDP column
we measure the time that is spent performing tasks related to the SDDP algorithm, excluding
the solve time. These include sampling the random variables, calculating cut coefficients, and
writing information to file. We have aggregated the JuMP and SDDP columns for the DOASA
configuration as it does not use JuMP. Finally, in the Total column, we report the total time
spent solving the 500 iterations.

After 500 iterations, the lower bound of all configurations was similar (∼$360.4 million).
However, solution times varied between DOASA and SDDP.jl, Gurobi and CPLEX, and
even between different Gurobi versions. Of the four configurations, SDDP.jl with CPLEX
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Time (s)
Solver External JuMP SDDP Total

DOASA Gurobi v6.5.0 458.1 (1.1) 60.5 (0.8) 518.6 (1.4)
SDDP.jl Gurobi v6.5.0 559.0 (1.0) 68.7 (0.7) 41.5 (0.5) 669.2 (1.5)
SDDP.jl Gurobi v7.0.0 580.2 (1.1) 69.8 (0.7) 41.6 (0.6) 691.6 (1.4)
SDDP.jl CPLEX v12.6.1 319.6 (3.6) 75.9 (1.4) 41.3 (0.9) 436.8 (5.4)

Table 3.2: Solution time after 500 iterations. All values are reported as the mean (standard
deviation) of twenty repetitions.

v12.6.1 performed the fastest (mean of 436.8 seconds over the 20 repetitions to solve 500 iter-
ations), followed by DOASA (518.6 seconds), SDDP.jl with Gurobi v6.5.0 (669.2 seconds),
and SDDP.jl with Gurobi v7.0.0 (691.6 seconds), with the result that SDDP.jl was faster
than DOASA.

However, despite solving an identical number of linear programs, the SDDP.jl configura-
tion with Gurobi v6.5.0 spent 22% longer in the external solver than DOASA with Gurobi v6.5.0
(and 29% longer overall). This is because DOASA can use more efficient cut selection heuris-
tics than SDDP.jl due to the tight coupling between DOASA and Gurobi. In particular, as we
discussed in Section 2.4.2, DOASA uses a form of Level One cut selection and modifies the
coefficients of existing constraints in-place. The 20% difference in computation time between
DOASA and SDDP.jl is one reason why we believe that modifying the coefficients in-place is
computationally beneficial.

In contrast to the tight coupling between DOASA and Gurobi, the combination of SDDP.jl
and JuMP allows the solver to be changed by the user with a single line of code. Thus, it is easy
to show that despite solving larger subproblems, SDDP.jl with CPLEX v12.6.1 was 15%
faster than DOASA with Gurobi v6.5.0. This suggests that for this particular model, CPLEX is
faster than Gurobi, and that this speedup outweighs the overhead of going through the JuMP
abstraction layer. This overhead is approximately 10–20% of the total solution time. However,
using JuMP allows the user to specify the subproblems using the simple input syntax described
in the previous two sections. In contrast, DOASA builds the constraint matrix directly using
the Gurobi C++ API. This significantly increases the development time needed to modify and
debug the subproblems (for example, when a new feature is added).

Interestingly, SDDP.jl with Gurobi v7.0.0 is 3.7% slower than SDDP.jl with Gurobi
v6.5.0. This could indicate that the improvements between Gurobi version 6.5.0 and Gurobi
version 7.0.0 benefit difficult problems that take a long time to solve at the expense of small
LP’s. (On average, the subproblems in the New Zealand HTSP take on the order of 50µs to
solve.)

Finally, less than 10% of the total solution time is spent performing tasks in the SDDP.jl
library. This highlights the efficiency of the Julia implementation and demonstrates that further
performance gains are more likely to be found by reducing the solve time of the individual
subproblems than by improving the code in the SDDP.jl library.
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3.5 Comparison with other libraries

SDDP.jl is not the only library for solving multistage stochastic optimisation problems using
SDDP. We briefly describe six alternatives and contrast their abilities to SDDP.jl. A summary
can be found in Table 3.3. Four of the alternatives are open-source: StochDynamicProgram-
ming.jl [126], StructDualDynProg.jl [127], FAST (Finally, An SDDP Toolbox) [39], and StOpt
[84]. The remaining two are commercial software: QUASAR [172], and the seminal SDDP by
PSR [169].

Perhaps the most interesting observation is that (including the PSR re-write), four of the
seven implementations are in Julia. An even more interesting observation is that each of the
authors chose to develop an SDDP library in Julia independently, and all within a few months
of each other. This supports our belief that the combination of Julia’s metaprogramming and
multiple dispatch abilities, as well as the JuMP [67] package and wider JuliaOpt ecosystem, are
the ideal foundation upon which to build an SDDP library.

Since all of the Julia libraries are based on the JuliaOpt ecosystem, they share many of the
same features. StochDynamicProgramming.jl and StructDualDynProg.jl even share the same
(user-extensible) cut selection routines. Moreover, since SDDP.jl and StructDualDynProg.jl
expose the full functionality of JuMP, they support arbitrary convex subproblems. StochDy-
namicProgramming.jl does not expose the full functionality of JuMP. Instead it implements a
different modelling layer. This allows it to support noise terms in the constraint coefficients
(something notably missing from SDDP.jl). However, this comes at the expense of a less
user-friendly modelling interface. For example, the following is an implementation of the air
conditioner problem in StochDynamicProgramming.jl:

m = LinearSPModel(

3, # stages

[(0, 200), (0, Inf)], # control bounds

[0.0], # initial state

# cost function

(t,x,u,w) -> 100u[1] + 300u[2] +50(x[1] + u[1] + u[2] - w[1]),

# dynamics function

(t,x,u,w) -> [ x[1] + u[1] + u[2] - w[1] ],

[NoiseLaw([100], [1.0]), # stagewise-independent noise terms

NoiseLaw([100, 300], [0.5, 0.5]),

NoiseLaw([100, 300], [0.5, 0.5])]

)

set_state_bounds(m, [(0, Inf)])

solve_SDDP(m,

SDDPparameters(ClpSolver(), max_iterations = 10)

)
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The SDDP.jl equivalent is:

m = SDDPModel(

stages = 3,

objective_bound = 0.0,

sense = :Min,

solver = ClpSolver()

) do sp, t

@state(sp, x_out >= 0, x_in == 0)

@variables(sp, begin

0 <= p <= 200

0 <= o <= Inf

end)

DEMAND = [ [100], [100, 300], [100, 300] ]

@rhsnoise(sp, w=DEMAND[t], x_out == x_in + p + o - w)

PROBABILITY = [ [1.0], [0.5, 0.5], [0.5, 0.5] ]

setnoiseprobability!(sp, PROBABILITY[t])

@stageobjective(sp, 100p + 300o + 50x_out)

end

solve(m,

max_iterations=10

)

One reason for the design choice of StochDynamicProgramming.jl is so that the same Line-
arSPModel definition can be solved a variety of ways, including stochastic dynamic program-
ming, and by an LP as the deterministic equivalent.

Unlike the other libraries, StructDualDynProg.jl can model problems with an arbitrary
(acyclic) policy graph. However, it does not support stagewise-independent noise terms. There-
fore, the user is forced to expand the policy graph in a manner similar to our example in Figure
1.5. FAST also lacks support for stagewise-independent noise terms. This is a large limitation
since an increase in the number of subproblems causes a corresponding increase in memory
requirements. Moreover, computation time may also increase.

Compared with the other open-source libraries, StOpt is implemented in a low-level lan-
guage (C++). Moreover, it provides no modelling capability. Instead, the user codes their own
subproblems, including the interface with any solver. This significantly adds to the development
cost of new models. StOpt also lacks many of the features supported by the other libraries, such
as risk aversion and cut selection.

Finally, the two commercial libraries (QUASAR and PSR’s SDDP) contain many of the
advanced features in SDDP such as risk aversion, cut selection, and parallel implementations.
However, since these libraries are focused on the end-user, they offer fewer customisation op-
tions to the user. PSR’s SDDP [169] is also unique as the only non-general library we compare;
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it is exclusively for hydro-thermal scheduling.
From this analysis, we conclude that SDDP.jl is a valuable contribution to the suite of

libraries for SDDP. Its biggest strengths are the first-class support for risk measures and cut
selection techniques, as well as the user-friendly interface. The biggest weakness of SDDP.jl
is the lack of support for noise terms in the constraint coefficients. However, these can be
modelled by a Markovian policy graph.

3.6 Summary

In this chapter we introduced SDDP.jl, a Julia package for stochastic dual dynamic program-
ming. In addition to describing the convenient user-interface, we showed that for the New
Zealand HTSP, the overhead of using JuMP and the generic library SDDP.jl compared with a
hard-coded C++ implementation is less than the difference between two commercial LP solvers.
We also provided strong evidence that the implementation is correct by showing that two inde-
pendently developed implementations give identical solutions.

There are many more features to SDDP.jl that we have not discussed in the interest of
conciseness. For example, we have not discussed how to implement Markovian policy graphs or
noise terms in the objective function. Instead, readers are directed to the online documentation
at github.com/odow/SDDP.jl for more information.

We believe the unique features of SDDP.jl (that it is written entirely in a high-level lan-
guage and built upon the state-of-the-art mathematical optimisation library JuMP) provide an
excellent platform upon which to build and test new improvements and extensions to the SDDP
algorithm. In the next chapter, we discuss one such extension to the SDDP algorithm that en-
ables the solution of problems with stagewise-dependent noise in the objective function. In
addition, we implement and test the extension in SDDP.jl.

github.com/odow/SDDP.jl


Chapter 4

SDDP with stagewise-dependent objective
uncertainty

The previous two chapters have focused on the stochastic dual dynamic programming (SDDP)
algorithm of Pereira and Pinto [154] (including various extensions and computational improve-
ments) as a solution technique for multistage stochastic optimisation problems. However, SDDP
is limited to models where the cost-to-go function is convex. In this chapter we present two
extensions of the SDDP algorithm that enable the solution of a class of problems where the
cost-to-go function is a saddle function (i.e. convex in some state dimensions and concave in
the others). The first method is a hybrid of SDDP and the stochastic dynamic programming
method. The second is based on recent work by Downward et al. [66]. In addition to describ-
ing and providing practical implementations of both methods, we extend the convergence result
of Downward et al. [66] to a broader class of problems. We demonstrate the computational
performance of both methods through a simple example.

4.1 Introduction

Since its inception, SDDP has been widely applied to a variety of problems in energy [136],
finance [121], and agriculture [93]. However, one significant downside to the SDDP algorithm
is the requirement that the cost-to-go function is convex. This has ruled out the use of SDDP on
many applications with a price process that exhibits stagewise dependence.

To avoid the convexity requirement, Gjelsvik et al. [86] proposed a hybrid of the SDDP and
stochastic dynamic programming (SDP) algorithms. However, the price process they modelled
only took a limited number of discrete values. This enabled the exact discretisation of the price
dimension. This approach was later extended by Philpott and de Matos [161] and Rebennack
[174] to allow more flexibility in the types of uncertainties that could be represented. (Using
the terminology introduced in Chapter 1, the above authors modelled the stochastic processes
using Markovian policy graphs.) However, these methods retained the significant downside that

75
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the uncertainty process had to take a limited number of discrete values (i.e. Markov states) to
maintain tractability of the problem.

In traditional SDP, a common approach to avoid this restriction is to use an interpolation
scheme to evaluate points in the state-space that are not in the discretised lattice. In the SDDP
setting, this corresponds to interpolating between the cost-to-go functions of different Markov
states. The first mention of this idea appears to be in Gjelsvik et al. [87]. However, the reference
to the interpolation idea is made in passing and likely existed before then. We are aware of one
other implementation of the idea in the thesis of Wahid [204], who explored the method in
a hydroelectric setting. Henceforth we shall refer to this method as the static interpolation

method.

Recently, a new method has been proposed by Downward et al. [66], henceforth called
the dynamic interpolation method. The dynamic interpolation method adds new points in the
discretisation lattice via sampling. In contrast to the static interpolation method, which may
have some interpolation error and thus not converge to the optimal solution, Downward et al.
[66] provide a formal proof that their method converges to the optimal policy, almost surely, in
a finite number of iterations.

Their convergence result applies to the case where the price process is linear and the stage-
objective (in stage t) has the form p′t

>Qtxt, where p′t is a vector of price-state variables, Qt is an
appropriately dimensioned matrix, and xt is a vector of state variables. This class of problems
includes, for example, the (one-dimensional) mean-reverting auto-regressive price process with
lag-one:

p′t = αpt + (1− α)µ+ εt,

with an objective function of p′t × xt.
However, in many applications, the price process can be modelled more accurately by a

multiplicative auto-regressive process [71, 112]:

log(p′t) = α log(pt) + (1− α)µ+ εt.

This clearly breaks the assumption of Downward et al. that the price process is linear. One
way of overcoming this is to perform a change-of-variables by taking the log of the price-
state. We denote this as yt = log(pt). The transition of the yt state variable is linear (y′t =

αyt + (1− α)µ + εt); however, the price p′t will appear in the objective as ey′t . This case is not
covered by the convergence proof of Downward et al. [66], and thus serves as the motivation
for this chapter.

The chapter is laid out as follows. In Section 4.2, we formulate a simple example that we use
as the basis for introducing the two interpolation methods. Then, in Section 4.3, we introduce
the static interpolation method. In Section 4.4, we introduce the dynamic interpolation method.
This includes an extension in Section 4.4.2 to the convergence result of Downward et al. [66]
so that it applies to a broader class of problems, including the multiplicative auto-regressive
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process described above. Finally, in Section 4.5, we propose a new method that is a hybrid of
the static and dynamic interpolation methods.

4.2 Example: the widget producer

To motivate our discussion in this chapter, we consider the problem faced by a widget producer
over a period of five days. They have a stock of widgets (denoted by xt at the start of day t)
and need to choose the quantity of widgets to sell (denoted ut on day t) each day. At the start
of each day, and before the sales decision is made, some widgets are produced. However, the
process by which the widgets are produced is stochastic. The quantity ωwt of widgets produced
on day t is drawn from the sample space Ωw

t = {0, 5, 10, . . . , 50} with uniform probability.
After learning how many widgets were produced on day t, the agent chooses the quantity

ut of widgets to sell. They earn the price of the widgets pt, multiplied by the quantity ut of
widgets they sell. The price pt at which the widgets can be sold on day t follows a stochastic
process. Specifically, we model it using the log auto-regressive process:

log(pt) = log(pt−1) + ωpt ,

where ωpt is uniformly drawn from the sample space:

Ωp
t = {log(w) : w ∈ {0.9, 0.95, 0.99, 1, 1.01, 1.05, 1.1}} .

Importantly, this price process evolves independently of the actions of the agent and the
quantity of widgets they have unsold (i.e. xt). The new price, p′t, is revealed before the agent
chooses the quantity of widgets to sell. The agent cannot sell more than 100 widgets per day,
and cannot buy widgets, so ut ∈ [0, 100] for all t = 1, 2, 3, 4, 5. In addition, the agent can
only sell widgets from storage or that have been produced during the stage, so x′t ≥ 0 for all
t = 1, 2, 3, 4, 5. They are also limited in the quantity of widgets they can store, so x′t ≤ 350 for
all t = 1, 2, 3, 4, 5. Initially, the agent has 200 widgets, and the price during the previous day
was $1.50.

This problem can be modelled as a multistage stochastic optimisation problem with five
Hazard-Decision subproblems that form a linear policy graph (Figure 4.1).

t = 1 t = 2 t = 3 t = 4 t = 5

Figure 4.1: Policy graph of widget producer problem.

There are two state variables: (1) the quantity of widgets xt in storage at the start of day t;
and (2) the price of a widget pt during previous day t − 1. In each stage, the noise terms are
sampled from the Cartesian product of Ωw

t and Ωp
t (i.e. independently). We denote (ωwt , ω

p
t ) ∈

Ωw
t × Ωp

t by ωt ∈ Ωt. We can express the Hazard-Decision subproblem t as:
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HDt : Vt (xt, pt, ωt) = min
x′t,ut

−p′t × ut + Vt+1(x′t, p
′
t)

s.t. x′t = xt − ut + ωwt

log(p′t) = log(pt) + ωpt

ut ∈ [0, 100]

x′t ∈ [0, 350],

where Vt+1(x′t, p
′
t) = E ωt+1∈Ωt+1 [Vt+1 (x′t, p

′
t, ωt+1)], V4(·) = 0, and the initial conditions are

(x1, p1) = (200, 1.50). As formulated, HDt has a bilinear term in the objective function (p′t×ut).

One approach to solve the widget producer example is to expand the policy graph (Figure
4.1) into a Markovian policy graph with a different Markov state for every possible price in
each stage. However, as the number of possible price values increases, this approach quickly
becomes intractable. Traditional dynamic programming overcomes this limitation by interpo-
lating between points on the sampled lattice. This corresponds to estimating the cost-to-go at a
Markov state by interpolating between the cost-to-go functions of adjacent Markov states. An
example of this is shown in Figure 4.2, where the cost-to-go function when the price is $1.5 is
constructed by a convex combination of the cost-to-go functions when the price is $1 and $2.

0.5 1 1.5 2 2.5 3

1

2

p′t = $1.00

p′t = $1.50

p′t = $2.00
Vt+1(x′t, $1.50) = 0.5Vt+1(x′t, $1) + 0.5Vt+1(x′t, $2)

x′t

V t
+

1

Figure 4.2: Interpolating the cost-to-go function between two existing cost-to-go functions.

To the best of our knowledge, this hybrid method of the stochastic dynamic programming
(SDP) and stochastic dual dynamic programming (SDDP) algorithms (without interpolation)
was first proposed by Gjelsvik et al. [86]. However, the only subsequent analyses of the inter-
polation variant were in Gjelsvik et al. [87] and Wahid [204]. We will refer to this method as
the static interpolation method.
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4.3 The static interpolation method

Before we introduce the static interpolation method, we discuss some preliminaries. First,
given a function f(x) and a discrete set of points x̄ = {x̄1, x̄2, . . . , x̄N}, we can construct a
piecewise linear interpolation of the function f at the point x̂ by the convex combination of
the function evaluations at closest discretised points above and below x̂. An example for the
function f(x) = x(1− x) is shown in Figure 4.3.

x

f
(x

)

Figure 4.3: Piecewise linear interpolation of a one-dimensional function.

Furthermore, note that if the function f is concave, then by definition, this interpolation re-
sults is always a lower bound for the function. Moreover, the convex combination of discretised
points that estimates f(x̂) can be evaluated according to the following linear program, which
we call the Linear Interpolating Problem (LIP):

LIP: f(x̂) = max
γ

N∑
i=1

γif(x̄i)

s.t.
N∑
i=1

γi = 1

N∑
i=1

γix̄i = x̂

γi ≥ 0, i ∈ {1, 2, . . . , N}.

Second, the formulation of HDt contains a nonlinear transition function (with respect to the
pt state variable). We perform the substitution yt = log(pt) to obtain the equivalent representa-
tion:

HDt : Vt (xt, yt, ωt) = min
x′t,ut

−ey′t × ut + Vt+1(x′t, y
′
t)

s.t. x′t = xt − ut + ωwt

y′t = yt + ωpt

ut ∈ [0, 100]

x′t ∈ [0, 350].

In this form, given fixed values of yt and ωt, Vt is convex with respect to xt. Therefore, we
can approximate the expected cost-to-go function with respect to x′t using cutting planes. For
now, we shall also claim (although we will prove it in Section 4.4.2) that Vt is concave with
respect to yt. Therefore, we can approximate the cost-to-go function with respect to y′t using
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the interpolation method described above. This results in an approximation that is a valid lower
bound for the cost-to-go function Vt+1.

x′ty′t

V t
+

1

Figure 4.4: Visualisation of the “ribs” over the function f(x, y) = x2 − y2.

4.3.1 Formulation

In the static interpolation method, we replace the cost-to-go term in the objective of HDt with a
convex combination of cost-to-go variables. The number of these variables is chosen a priori,
and each variable θt,r is associated with a discretised point ŷr. As in SDDP, each variable θt,r is
bounded by a set of cuts which are linear functions of the x′t state variable. We use the term rib

to describe each cost-to-go variable with its associated cuts, since the method can be visualised
by a rib cage, where each rib is composed of a set of cuts, and the ribs are spaced along the
price dimension. An example is shown in Figure 4.4. We denote the set of ribs in stage t by
Rt = {1, 2, . . . , NR}. In each subproblem, the price-state y′t will not necessarily correspond
to one of the ribs. Therefore, we interpolate the cost-to-go function between the ribs using the
LIP. Thus, we can rewrite HDt as the approximated problem:

AP-StaticKt : Vt (xt, yt, ωt) = min
x̄t,x′t,ut,y

′
t,θ

max
γ
−ey′t × ut +

∑
r∈Rt

γrθt,r

s.t. x′t = x̄− ut + ωwt

x̄t = xt, [λt]

y′t = yt + ωpt

ut ∈ [0, 100]

x′t ∈ [0, 350]∑
r∈Rt

γrŷr = y′t∑
r∈Rt

γr = 1

γr ≥ 0, ∀r ∈ Rt

θt,r ≥ αkt,r + βkt,rx
′
t, ∀r ∈ Rt, k ∈ {1, . . . , K},
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where the state yt is the log of the actual price pt. Note that in the objective, we take the
exponential of yt so that the actual objective is −p′t × ut.

Because the new price-state y′t depends only on the incoming price-state yt and the observa-
tion of the random variable ωpt , the price-state can be updated outside the optimisation according
to the transition function y′t = yt + ωpt . Therefore, the value of y′t in the objective function can
be set as a constant, rather than an optimisation variable. Once the value of y′t is known, the
values of γr can be calculated. To do this with a one-dimensional price-state, we find the closest
rib at a price less than y′t (denoted ŷr−), and the closest rib at a price greater than y′t (denoted
ŷr+), and set:

γr =


y′t−ŷr−
ŷr+−ŷr−

, r = r+

ŷr+−y
′
t

ŷr+−ŷr−
, r = r−

0, otherwise.

(4.1)

Note that as a result, the price process must be contained within the bounding box defined
by the smallest and largest ribs. If the price-state is outside the ribs, then we cannot find a
feasible solution for γr. (We expand upon this point in Section 4.3.3.) If the price-state is
multi-dimensional, a more complicated interpolation scheme must be chosen.

Combining the ideas we have discussed so far, we can re-write the subproblems as:
SP-StaticKt (xt, yt, ωt):
Calculate y′t = yt + ωpt , compute and set γ according to Eq. 4.1, then solve:

Vt (xt, yt, ωt) = min
x̄t,x′t,ut,θ

−ey′t × ut +
∑
r∈Rt

γrθt,r

s.t. x′t = x̄t − ut + ωt

x̄t = xt, [λt]

ut ∈ [0, 100]

x′t ∈ [0, 350]

θt,r ≥ αkt,r + βkt,rx
′
t, ∀r ∈ Rt, k ∈ {1, . . . , K}.

Readers should note that the interpolation between the ribs may result in some interpolation
error. Therefore, the static interpolation method may not converge to the exact solution to HDt.
To reduce the interpolation error, more ribs can be added, but this comes at the cost of an
increased computational burden.

Modifications to the SDDP algorithm

The forward pass of the static interpolation method is similar to the SDDP algorithm described
in Chapter 2. The only difference is the process of calculating y′t and γr outside of the main
optimisation problem and updating the objective coefficient before solving each linear program.
However, on the backward pass we disregard the prices y′t that were sampled on the forward pass
and add a cut to each rib in every stage as if we observed the price corresponding to that rib.
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Pseudo-code is given in Algorithm 6.

Algorithm 6: The static interpolation algorithm.
set K = 0
while not converged do

/* Forward Pass */
set i = R, x = xR, y = yR, S = [ ]
sample i from R+ according to the transition matrix Φ
while i+ 6= ∅ do

sample ωi from Ωi

solve SP-StaticKi (x, y, ωi)
set x = x̂K+1

i = x′i
set y = y′i
append (i, x̂K+1

i ) to the list S
sample new i from i+ according to the transition matrix Φ

end
/* Backward Pass */

for (i, x̂K+1
i ) in reverse(S) do

for r ∈ Ri do
for j ∈ i+ do

for ωj ∈ Ωj do
solve SP-StaticKj (x̂K+1

i , ŷr, ωj)
set V̄ K

j,ωj
to the optimal objective value

set λ̄Kj,ωj to the value of λj in the optimal solution
end

end
compute the changed distribution ξ for F

j∈i+; ωj∈Ωj

[
V̄ K
j,ωj

]
set βK+1

i,r = Eξ
[
λ̄Kj,ωj

]
set αK+1

i,r = Eξ
[
V̄ K
j,ωj

]
− 〈βK+1

i,r , x̂K+1
i 〉

add the cut θi,r ≥ αK+1
i,r + 〈βK+1

i,r , x′i〉 to SP-StaticKi
end

end
increment K

end

Implementation in SDDP.jl

The static interpolation method is implemented in the SDDP.jl package that we introduced
in the previous chapter. Two changes are made to the user-interface in order to accommodate
the new method. First, value_function, a new keyword argument to the SDDPModel is
introduced. This argument must be a StaticPriceInterpolation object, which itself
takes a number of arguments. They are:
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• dynamics: a function that takes the price-state yt and noise ωt as arguments and returns
y′t.
• initial price: the value of the price-state at the root node yR.
• rib_locations: the list of rib locations ŷr.
• noise: a DiscreteDistribution representing the noise. The first argument is a

list of observations, the second argument is a list of the corresponding probabilities.
• cut_oracle: the cut selection heuristic to apply to each rib.

Below we give the code to initialise the static interpolation method for the widget producer
example. Note that we pass value_function a function that takes the stage and Markov
state as inputs and returns a StaticPriceInterpolation object. Also note that we need
to ensure that the ribs cover the price domain so that there exists a feasible value of γr for all
reachable price-states in stage t. We elaborate upon this requirement in Section 4.4.4.

function buildvaluefunction(stage, markovstate)

R = log.([0.9, 0.95, 0.99, 1.0, 1.01, 1.05, 1.1])

min_y = log(1.5) + stage * minimum(R)

max_y = log(1.5) + stage * maximum(R)

StaticPriceInterpolation(

dynamics = (y,noise) -> y + noise,

initial_price = log(1.50),

rib_locations = linspace(min_y, max_y, 5),

noise = DiscreteDistribution(R),

cut_oracle = LevelOneCutOracle()

)

end

m = SDDPModel(

... some arguments omitted ...

value_function = buildvaluefunction

) do sp, t

... some lines omitted ...

end

In addition to the value_function keyword, a new version of the @stageobjective
macro is introduced, which takes a function as the second argument. This function takes one
input, the price-state y′t, and returns the stage-objective. For example, given a JuMP variable u
that represents the number of widgets sold, the stage-objective for the widget example is:

@stageobjective(sp, y -> -exp(y)*u)
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4.3.2 Results

We solve the widget producer example using a varying number of evenly spaced ribs in each
stage. In Figure 4.5, we plot the lower bound after 100 iterations against the number of ribs
in each stage. As the number of ribs increases, the bound converges towards the value of
−$487.59.
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Figure 4.5: Convergence of the lower bound as the number of static ribs increases.

To understand the policy that the widget producer should adopt, we take the optimal policy
from the model with 15 ribs and perform a Monte Carlo simulation with 1000 replications. The
results are plotted in Figure 4.6. In each of the subplots, we plot, as shaded bands in order of
increasing darkness, the 0–100, 10–90, and 25–75 percentiles of the distribution of the plotted
variable. The solid line corresponds to the 50th percentile.

In the first stage, the optimal decision is to sell (Figure 4.6d) the quantity of widgets pro-
duced during the first stage (Figure 4.6c). Then, in stages t = 2, 3, 4, 5, the optimal decision
is to sell 50 widgets, plus the quantity produced during that stage. As a result, the quantity of
widgets in storage (Figure 4.6a) decreases linearly. However, in a small number of simulations
(≈ 1%), the policy sells the maximum number of widgets (100 widgets) in the first two stages.
This is a sub-optimal decision since the price process trends upwards, and occurs because of
the interpolation error that results from the fixed number of ribs.

In most simulated realisations, the price remains within a band ranging from $1.30 to $1.70
(Figure 4.6b). However, in some cases, a sequence of high prices is observed (e.g. p4, p5 ≥$2).

4.3.3 Practical considerations

The chief consideration when solving a problem using the static interpolation method is choos-
ing the number and placement of the ribs. Unfortunately, our experience suggests that this
choice is highly problem-dependent. However, since the process evolves exogenously, we can
simulate the process a priori to help guide this decision.

Another consideration is the behaviour of the backward pass. In Algorithm 6, we add a cut
to all the ribs in each subproblem at every iteration. Another approach could be to add a cut to
the closest rib, or to a subset of the ribs. However, we did not test these alternatives.
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Figure 4.6: Simulated policy for widget producer.

The policy of adding a cut to all the ribs in each subproblem can lead to infeasibilities
if the ribs in the next stage are not valid outer bounds for the price process from that point.
For example, in the widget producer example above, the price process is bounded by ribs at
$0.75/widget and $2.25/widget. If we place a rib at $2.25/widget in the second stage, then on
the backward pass the solution process will attempt to solve the third stage problem with a price
of $2.00/widget and $2.50/widget. If the greatest price rib is only at $2.25/widget in the third
stage, then we cannot find a feasible γ. There are three potential fixes for this problem:

1. choose the position of the ribs in each stage such that the price is always feasible;
2. relax the requirement that γ ≥ 0; or
3. project the price process back onto a fixed domain.

In the widget producer example, we chose option (1); however, it would be interesting to com-
pare the trade-offs in solution quality between the three options.

However, aside from the convergence issues, other techniques that have been developed
to improve the performance of traditional SDDP can be applied in this setting with minimal
changes. For example, cut selection techniques can be applied to each rib independently and
result in similar performance improvements. Nested risk measures can also be used via the
same “change-of-probability” approach of Philpott et al. [160].
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4.4 The dynamic interpolation method

In the static interpolation method, the ribs must be chosen a priori. Thus, without significant
domain knowledge, the modeller may place ribs at points in the price dimension that are infre-
quently (if ever) visited. Moreover, the method does not scale well to high dimensions. This
is analogous to the problem of discretising the state- and control-spaces faced by dynamic pro-
gramming. SDDP avoids the need to discretise the state-space by refining the estimate of the
cost-to-go function at a set of sampled points in the state-space. The analogue to this idea is to
dynamically add new θi,r and γi,r variables with associated cuts at sampled points in the price
domain. However, since each new cost-to-go variable will only have one cut associated with
it, the method of fixing the values for γ based on the two closest ribs will no longer result in
a tight lower bound. This problem of finding a tight interpolation was solved by Baucke et al.
[14] through a novel reformulation. Downward et al. [66] use this reformulation to develop the
algorithm we refer to as the dynamic interpolation method. In this section, we explain their
method and extend the class of problems it can be applied to.

4.4.1 Formulation

While explaining the dynamic interpolation method, we shall utilise the notation of Downward
et al. [66]. To highlight the differences, consider the following subproblem (using our notation):

Vi(xi, yi, ωi) = min
ui

Ci(x̄i, y
′
i, ui, ωi) + Fj∈i+ ωj∈Ωj [Vj (x′i, y

′
i, ωj)]

s.t. x′i = Ti(x̄i, ui, ωi)

y′i = Yi(yi, ωi)

x̄i = xi, [λi]

ui ∈ Ui(xi, ωi).

Downward et al. [66] make a number of simplifications and modifications to this notation.
In particular, they:

• denote xt as the value of the outgoing state variable instead of the incoming state variable;
• assume the policy graph is linear, so xi = xt−1 and x′i = xt;
• combine the state and control variables into a single xt variable;
• combine Ui and Ti, and assume they can be represented by the set of linear inequalities:

Aωtt xt + aωt ≥ xt−1;

• assume the Yi function is linear, such that: yt = Bωt
t yy−1 + bωt; and

• only consider the risk-neutral case where F = E.

Under these modifications to the notation, each stage t = 1, 2, . . . , T − 1 can be expressed
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as the subproblem:

SPt : Vt (xt−1, yt−1, ωt) = min
xt,yt

y>t Qtxt + Eωt+1∈Ωt+1 [Vt+1 (xt, yt, ωt+1)]

s.t. Aωtt xt + aωt ≥ xt−1

yt = Bωt
t yt−1 + bωt ,

where Aωtt and Bωt
t are square matrices, Qt is an appropriately dimensioned matrix, and aωt and

bωt are vectors. Note that xt and yt are both state vectors for stage t. Moreover, SPt is not a
convex optimisation problem due to the bilinear term in the objective. However, observe that,
given yt−1 and ωt, yt is uniquely determined.

In the final stage a variant of this problem is solved, where the cost-to-go is set to 0:

SPT : VT (xT−1, yT−1, ωT ) = min
xT ,yT

y>TQTxT

s.t. AωTT xT + aωT ≥ xT−1

yT = BωT
T yT−1 + bωT .

We define the expected cost-to-go function at the end of time period t (prior to observing the
noise in period t+ 1) as: Vt+1(xt, yt) = Eωt+1∈Ωt+1 [Vt+1 (xt, yt, ωt+1)].

Downward et al. [66] show that Vt+1(xt, yt) is a saddle function. By a saddle function, we
mean that Vt+1(xt, yt) is convex with respect to xt, and concave with respect to yt. Therefore,
since SDDP relies on convexity, the traditional cutting plane formula cannot be used. The so-
lution proposed by Downward et al. is to approximate the cost-to-go function Vt+1(xt, yt) by
introducing a family of cuts with respect to xt at a set of observed prices ŷkt , and then interpolate
between the cuts to estimate the cost-to-go function at prices that do not have a corresponding
cut. Since Vt+1(xt, yt) is convex with respect to xt, the cutting planes will form an outer ap-
proximation. Moreover, since Vt+1(xt, yt) is concave with respect to yt, the interpolation will
also form an outer approximation. Therefore, after K iterations, the approximated problem
AP-DynamicKt is a valid lower bound for the true subproblem SPt. The approximated problem
has the form:
AP-DynamicKt :

V K
t (xt−1, yt−1, ωt) = min

xt,yt,θt,k
max
γk

y>t Qtxt +
K∑
k=1

γkθt,k

s.t. Aωtt xt + aωt ≥ xt−1

yt = Bωt
t yt−1 + bωt

K∑
k=1

γkŷ
k
t = yt

K∑
k=1

γk = 1

γk ≥ 0, ∀k ∈ {1, 2, . . . , K}
θt,k ≥ αkt + βkt

>
xt, ∀k ∈ {1, 2, . . . , K}.
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Note that this formulation is almost identical to AP-StaticKt , the formulation in the static in-
terpolation method. However, instead of having a set of cuts associated with each cost-to-go
variable like AP-StaticKt , AP-DynamicKt has one cut for each cost-to-go variable, and there
may be multiple cost-to-go variables associated with the same price ŷkt . Solving AP-DynamicKt
is difficult due to the bilinear terms in the objective function. The solution identified by Baucke
et al. [14] is to take the inner maximisation problem:

P : max
γ

K∑
k=1

γkθt,k

s.t.
K∑
k=1

γkŷ
k = yt [µ]

K∑
k=1

γk = 1 [ϕ]

γk ≥ 0 ∀k ∈ {1, . . . , K},

and form the dual problem:

D : min
µ,ϕ

µ>yt + ϕ

s.t. µ>ŷk + ϕ ≥ θt,k, k ∈ {1, . . . , K},

This translates the problem of adding new variables to the primal formulation into the problem
of adding constraints to the dual formulation. Moreover, Baucke et al. [14] show that, given a
finite bound on the magnitude of µ so that ||µ||∞ ≤M , the optimal objective value µ>yt+ϕ is a
valid lower bound for the expected future cost term Vt+1(xt, yt). We refer to M as the Lipschitz

Constant. (See Baucke et al. [14] for details.)

Returning to AP-DynamicKt , observe that given yt−1 and ωt, yt is uniquely defined. There-
fore, we can calculate the value of yt outside of the optimisation problem AP-DynamicKt and
fix its value as a constant. Therefore, by calculating the value of yt outside the optimisation
problem, and by replacing the primal problem with the dual problem, we get:
SP-DynamicKt (xt−1, yt−1, ωt) :

Calculate yt = Bωt
t yt−1 + bωt and set as constant, then solve:

V K
t (xt−1, yt−1, ωt) = min

xt,µt,ϕt
y>t Qtxt + µ>t yt + ϕt

s.t. Aωtt xt + aωt ≥ xt−1 [λt]

µ>t y
k
t + ϕt ≥ αkt + βkt

>
xt ∀k ∈ {1, 2, . . . , K}.

We refer to the modified cut as a saddle-cut.

Modifications to the SDDP algorithm

The forward pass of the dynamic interpolation method is similar to the SDDP algorithm de-
scribed in Chapter 1. The only difference is the process of calculating yt outside of the main
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optimisation problem, and passing the two states, xt and yt, forward. The backward pass is also
very similar, except we use the saddle-cut:

µ>t y
k
t + ϕt ≥ αkt + βkt

>
xt.

Pseudo-code is given in Algorithm 7 (using our notation).

Algorithm 7: The dynamic interpolation
set K = 0
while not converged do

/* Forward Pass */
set x = xR, y = yR, S = [ ]
sample i from R+ according to the transition matrix Φ
while i+ 6= ∅ do

sample ωi from Ωi

solve SP-DynamicKi (x, y, ωi)
set x = x̂K+1

i = x′i
set y = ŷK+1

i = y′i
append (i, x̂K+1

i , ŷK+1
i ) to the list S

sample new i from i+ according to the transition matrix Φ
end
/* Backward Pass */

for (i, x̂K+1
i , ŷK+1

i ) in reverse(S) do
for j ∈ i+ do

for ωj ∈ Ωj do
solve SP-DynamicKj (x̂K+1

i , ŷK+1
i , ωj)

set V̄ K
j,ωj

to the optimal objective value
set λ̄Kj,ωj to the value of λj in the optimal solution

end
end
compute the changed distribution ξ for F

j∈i+; ωj∈Ωj

[
V̄ K
j,ωj

]
set βK+1

i = Eξ
[
λ̄Kj,ωj

]
set αK+1

i = Eξ
[
V̄ K
j,ωj

]
− 〈βK+1

i , x̂K+1
i 〉

add the cut 〈ŷK+1
i , µi〉+ ϕi ≥ αK+1

i + 〈βK+1
i , x′i〉 to SP-DynamicKi

end
increment K

end
algorithm.

Implementation in SDDP.jl

The dynamic interpolation method is implemented in the SDDP.jl package that we introduced
in the previous chapter. It can be initialised in a similar manner to the StaticPriceInt-
erpolation method we described previously. However, there are three notable exceptions.
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First, we no longer need to specify a fixed set of rib_locations. Instead, it is neces-
sary to give a min_price and max_price. Second, for the reasons that we outline at the
end of this section, the dynamic method does not (yet) support cut selection. Therefore, there
is no cut_oracle keyword. Third, we need to specify the Lipschitz constant M via the
lipschitz_constant keyword. Below we give the code to initialise the dynamic interpo-
lation method for the widget producer example.

function buildvaluefunction(stage, markovstate)

R = log.([0.9, 0.95, 0.99, 1.0, 1.01, 1.05, 1.1])

DynamicPriceInterpolation(

dynamics = (y, noise) -> y + noise,

initial_price = log(1.50),

min_price = log(1.50) + stage * minimum(R),

max_price = log(1.50) + stage * maximum(R)

noise = DiscreteDistribution(R),

lipschitz_constant = 10

end

end

m = SDDPModel(

... some arguments omitted ...

value_function = buildvaluefunction

)

) do sp, t

... some lines omitted ...

end

The stage-objective is identical to the one described in the static interpolation section. How-
ever, note that the stage-objective of the widget example, −eytut, is not of the form y>t Qtxt.
Therefore, the result of Downward et al. [66] does not ensure that the dynamic interpolation
method will converge to the optimal solution. To overcome this limitation, we extend the con-
vergence result of Downward et al. [66] to show that the widget producer example can be solved
using the dynamic interpolation method.

4.4.2 Extended convergence proof for the dynamic interpolation method

We consider an extension to the convergence result of Theorem 2 in Downward et al. [66] to
the case where the stage-objective is fωtt (yt)

>xt instead of y>t Qtxt, where yt ∈ RM , xt ∈ RN ,
and fωtt : RM → RN . In addition, we require the following assumptions in each stage t =

1, 2, . . . , T .

(A1) Given a fixed ωt, fωtt (yt) is elementwise concave with respect to yt. That is, for y(1)
t ,

y
(2)
t ∈ RM , λ ∈ [0, 1]: fωtt (λy

(1)
t + (1− λ)y

(2)
t ) ≥ λfωtt (y

(1)
t ) + (1− λ)fωtt (y

(2)
t ).
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(A2) xt ≥ 0.

Under these assumptions, subproblems with the modified objective function have the form:
SPt(xt−1, yt−1, ωt):

Vt(xt−1, yt−1, ωt) = min
xt

fωtt (gωtt (yt−1))>xt + Eωt+1 [Vt+1 (xt, g
ωt
t (yt−1), ωt+1)]

s.t. Aωtt xt + aωt ≥ xt−1

xt ≥ 0,

where the transition function yt = gωt(yt−1) = Bωt
t yt−1 + bωt .

To show that the algorithm still converges under this modification, we need to show that
the expected cost-to-go function Vt+1(xt, yt) = Eωt+1∈Ωt+1 [Vt+1 (xt, yt, ωt+1)] remains a saddle
function.

Before we begin, we state a simple lemma.

Lemma 1. If f : RM → R is a concave function, A is an M × N matrix, and b is an M × 1

vector, then f(Ax+ b) is a concave function with respect to x.

Proof. This result is well-known, see, for example, Rockafellar [179, Theorem 5.7].

We now prove the concavity of Vt+1(xt, yt, ωt+1) with respect to yt using induction.

Lemma 2. Under assumptions A1 and A2, Vt+1(xt, yt, ωt+1) is concave with respect to yt, for

all t ∈ {1, . . ., T − 1}.

Proof. We will prove this by induction for Vt(xt−1, yt−1, ωt). First, we assume that the cost-to-
go function in stage t+1, Vt+1(xt, yt, ωt+1), is concave with respect to yt. Then, since gωt(yt−1)

is a linear mapping, by 1 we have that Vt+1(xt, g
ωt(yt−1), ωt+1) is concave with respect to yt−1.

Recall that the stage problem is:

Vt(xt−1, yt−1, ωt) = min
xt

fωtt (gωtt (yt−1))>xt + Eωt+1 [Vt+1 (xt, g
ωt
t (yt−1), ωt+1)]

s.t. Aωtt xt + aωt ≥ xt−1

xt ≥ 0.

Given fixed values of xt−1 and ωt, consider two values of yt−1: y(1)
t−1 and y(2)

t−1, with optimal
solutions x(1)

t and x(2)
t , respectively.

Now suppose we had a third value y(3)
t−1 = (1−λ)y

(1)
t−1 +λy

(2)
t−1, with a corresponding optimal

solution x(3)
t . For concavity, we require:

Vt(xt−1, y
(3)
t−1, ωt) ≥ (1− λ)Vt(xt−1, y

(1)
t−1, ωt) + λVt(xt−1, y

(2)
t−1, ωt).

Therefore, this would imply:

fωtt (gωtt (y
(3)
t−1))

>
x

(3)
t + Eωt+1

[
Vt+1

(
x

(3)
t , gωtt (y

(3)
t−1), ωt+1

)]
≥
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(1− λ)
(
fωtt (gωtt (y

(1)
t−1))

>
x

(1)
t + Eωt+1

[
Vt+1

(
x

(1)
t , gωtt (y

(1)
t−1), ωt+1

)])
+

λ
(
fωtt (gωtt (y

(2)
t−1))

>
x

(2)
t + Eωt+1

[
Vt+1

(
x

(2)
t , gωtt (y

(2)
t−1), ωt+1

)])
.

With a view to contradiction, suppose that:

fωtt (gωtt (y
(3)
t−1))

>
x

(3)
t + Vt+1

(
x

(3)
t , gωtt (y

(3)
t−1), ωt+1

)
<

(1− λ)
(
fωtt (gωtt (y

(1)
t−1))

>
x

(1)
t + Vt+1

(
x

(1)
t , gωtt (y

(1)
t−1), ωt+1

))
+ (4.2)

λ
(
fωtt (gωtt (y

(2)
t−1))

>
x

(2)
t + Vt+1

(
x

(2)
t , gωtt (y

(2)
t−1), ωt+1

))
,

for some ωt+1.
From the concavity of fωtt (yt) (by assumption A1), and since x(3)

t ≥ 0 (by assumption A2),
we have that:

(1− λ)
(
fωtt (gωtt (y

(1)
t−1))

>
x

(3)
t

)
+ λ

(
fωtt (gωtt (y

(2)
t−1))

>
x

(3)
t

)
≤ fωtt (gωtt (y

(3)
t−1))

>
x

(3)
t .

In addition, from the concavity of Vt+1(xt, g
ωt(yt−1), ωt+1) with respect to yt−1, we have:

(1− λ)
(
Vt+1

(
x

(3)
t , gωtt (y

(1)
t−1), ωt+1

))
+ λ

(
Vt+1

(
x

(3)
t , gωtt (y

(2)
t−1), ωt+1

))
≤

Vt+1

(
x

(3)
t , gωtt (y

(3)
t−1), ωt+1

)
.

Therefore, from Eq. 4.2 and the above inequalities we have:

(1− λ)
(
fωtt (gωtt (y

(1)
t−1))

>
x

(3)
t + Vt+1

(
x

(3)
t , gωtt (y

(1)
t−1), ωt+1

))
+

λ
(
fωtt (gωtt (y

(2)
t−1))

>
x

(3)
t + Vt+1

(
x

(3)
t , gωtt (y

(2)
t−1), ωt+1

))
<

(1− λ)
(
fωtt (gωtt (y

(1)
t−1))

>
x

(1)
t + Vt+1

(
x

(1)
t , gωtt (y

(1)
t−1), ωt+1

))
+

λ
(
fωtt (gωtt (y

(2)
t−1))

>
x

(2)
t + Vt+1

(
x

(2)
t , gωtt (y

(2)
t−1), ωt+1

))
.

This is obviously a contradiction, since x(3)
t cannot give a lower cost than the optimal solutions

x
(1)
t and x(2)

t ; therefore, Vt(xt−1, yt−1, ωt) is concave with respect to yt−1.
Finally, in the terminal stage T , VT+1(xT , yT , ωT+1) = 0 and is therefore concave. Thus,

applying the induction, Vt+1(xt, yt, ωt+1) is concave with respect to yt for all t ∈ {1, . . . , T −
1}.

Lemma 3. Under assumptions A1 and A2, Vt+1(xt, yt) is concave with respect to yt, for all

t ∈ {1, 2, . . . , T − 1}.

Proof. By Lemma 2, we have that Vt+1(xt, yt, ωt+1) is concave with respect to yt given fixed
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values of xt and ωt+1, for all t ∈ {1, 2, . . . , T − 1}. It follows that:

Vt+1(xt, yt) = Eωt+1∈Ωt+1 [Vt+1 (xt, yt, ωt+1)]

is concave with respect to yt, for all t ∈ {1, 2, . . . , T − 1}.

Lemma 4. Vt+1(xt, yt) is convex with respect to xt, for all t ∈ {1, 2, . . . , T − 1}.

Proof. We can directly apply Lemma 1 of Downward et al. [66] since yt is still uniquely deter-
mined for a fixed yt−1 and ωt.

We now prove the main result that the dynamic interpolation algorithm will still converge
almost surely under our new assumptions.

Theorem 1. Under assumptions A1 and A2, Algorithm 7 converges with probability 1 to an

optimal solution of our modified problem in a finite number of iterations.

Proof. By Lemma 3 and Lemma 4, Vt+1(xt, yt) is a saddle function for all t ∈ {1, 2, . . . , T−1}.
Since the remainder of the proof of Theorem 2 in Downward et al. [66] does not utilise the
transition function (i.e. yt = Bωt

t yt−1+bωtt ) or the stage-objective (i.e. fωtt (yt)
>xt), the algorithm

will still converge almost surely in a finite number of iterations.

4.4.3 Results

Observe that the cost-to-go function for the widget producer example is a saddle function since
ut ≥ 0, the transition function yt = yt−1 + ωt is linear, and ft(yt) = −eyt is concave. This
implies that the first-stage objective function value of the static interpolation formulation for
the widget producer is a lower bound. In addition, since the cost-to-go function is a saddle
function, we can solve the widget producer example using the dynamic interpolation algorithm.
The subproblems are:
SP-DynamicKt (xt, yt, ωt):
Calculate y′t = yt + ωpt and set as a constant in the objective, then solve:

Vt (xt, yt, ωt) = min
ut,x′t,µ,ϕ

−ey′t × ut + y′tµ+ ϕ

s.t. x′t = x̄t − ut + ωt

x̄t = xt, [λt]

ut ∈ [0, 100]

x′t ∈ [0, 350]

ŷkµ+ ϕ ≥ αkt + βkt x
′
t k ∈ {1, . . . , K},

||µ ||∞ ≤M.

Note that in this formulation, we do not define a set of ribs a priori. Instead, cuts are
placed in the price dimension at sampled points (i.e. ŷk) and the interpolation happens via
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the embedded dual problem. We also bound the magnitude of the µ variables to prevent the
subproblems from being unbounded. We call M the Lipschitz constant. (See Baucke et al. [14]
for details.)

In Figure 4.7, we plot the convergence of the lower bound against the number of iterations.
As the number of iterations increases, the dynamic interpolation bound converges towards the
lower bound that we obtained using the static interpolation method with 20 ribs (−$487.59).
This confirms that static and dynamic interpolation methods converge to the same optimal so-
lution. Note that we do not compare the computational performance (in terms of the number of
iterations or solution time) here; that is analysed in Section 4.5 below. The policy is identical to
that observed in Figure 4.6 so we omit its description.
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Figure 4.7: Convergence of the lower bound against the number of iterations using the dynamic
interpolation method.

4.4.4 Practical considerations

Convergence As claimed by Pereira and Pinto [154], SDDP is able to avoid the “curse of
dimensionality” by only refining the approximation of the cost-to-go function at portions of the
state-space that are likely to be visited. If a point in the state-space has not been visited a large
number of times in the iteration phase of the algorithm, the policy may be sub-optimal. In most
cases, the agent can use their controls to regulate the trajectory of the system through the state-
space. Thus, the system may visit parts of the state-space a large number of times regardless
of the sequence of random variables observed. In contrast, the price-states in the dynamic
interpolation algorithm evolve independently of the controls. Since the probability of sampling
a sequence of very high, or very low prices is small, the cost-to-go function approximation at
the edges of the price domain for a given stage may be poor. When the policy is simulated, this
can result in a sub-optimal sequence of controls. This issue can be resolved by carrying out
more iterations, but this becomes computationally expensive.

Readers should note that this issue is also present in the SDDP algorithm, but it is exacer-
bated in the dynamic interpolation algorithm by the uncontrollable price-states.
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Cut selection During the course of the SDDP algorithm, thousands of valid cutting planes
are discovered. However, many of those cuts may be dominated by cuts discovered in later
iterations. Therefore, the performance of the algorithm can be improved by only including a
subset of the cuts in each stage problem (we referred to this in Chapter 2 as cut selection). In
Section 2.4, we discussed a number of heuristics that have been proposed for selecting cuts in
the SDDP algorithm. However, due to the different stage problem in the dynamic interpolation
algorithm compared with the traditional SDDP formulation, heuristics such as Level One cut
selection [56] are no longer directly applicable. However, there may be close analogues that
extend to the new formulation. One class of heuristics that is still directly applicable is based
around scoring the number of times that a cut was active in the solution (i.e. the dual of the con-
straint was non-zero), and removing those cuts that are used infrequently, or have not been used
for a given number of iterations [143]. However, since the price-state evolves independently,
there may be areas which the solution visits infrequently. Therefore, discarding cuts in these
areas may exacerbate the convergence issue described above.

The choice of an efficient cut selection heuristic for the dynamic interpolation method re-
mains an open question.

Initialisation In the initial iterations of the SDDP algorithm, it is necessary to bound the cost-
to-go variable by some large value. In contrast, the dynamic interpolation algorithm requires
a bound on the cost-to-go, as well as a bound on the subgradient of the cost-to-go function
with respect to the price-state (the Lipschitz constant α in Baucke et al. [14]). The choice of
these bounds can have a large effect on the algorithm’s performance. Moreover, whilst the
practitioner may have an intuitive understanding of an appropriate bound on the cost-to-go
variable, the bound on the subgradient is less intuitive.

To improve performance, a different Lipschitz constant M should be used for each dimen-
sion of the vector µ. In addition, it is useful to provide an estimate for the domain of the
price-state yt. This enables initial constraints based on the bound of the cost-to-go to be added
at each of the vertices of the bounding box for price. However, since this leads to 2N constraints
being added, this is only practical for low-dimensional price processes (i.e. N < 5).

Risk Although not mentioned by Downward et al. [66], the algorithm can naturally be ex-
tended to solve the risk-averse case via the same “change-of-probability” approach of Philpott
et al. [160], which we outlined in Section 1.3.

4.5 Hybrid methods

Observe that the static interpolation method is equivalent to the dynamic interpolation that sam-
ples a fixed set of price-states on the backward pass instead of the one observed on the forward
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pass. Therefore, a hybrid method could be implemented that consists of the dynamic inter-
polation method, augmented by a set of prices to visit on each backward pass in addition to
the observed price. This has the benefit of guaranteeing convergence (since we still eventually
sample every price-state), whilst providing better sampling properties at the edge of the price
domain. It also allows the model to extrapolate the cost-to-go function outside the fixed set
of ribs and can scale to multiple dimensions. However, this method is hampered by the re-
quirement to appropriately choose the location and number of the fixed set of ribs. In addition,
the issue of an appropriate cut selection heuristic is still unsolved. As such, any performance
improvement would be problem-specific.

Another option is to run the static interpolation method for a truncated number of iterations,
and then switch to the dynamic interpolation method. The cuts discovered during the static
interpolation phase can be used as an initial approximation of the cost-to-go function for the
dynamic interpolation phase. We call this method the hot-start method. There are two key
considerations with the hot-start method:

1. the number of ribs in the initial phase; and
2. the number of iterations in the initial phase.

If more ribs are used in the initial phase, then the interpolation error is minimised. However,
each iteration is more computationally intensive. If more iterations are conducted, then the
bound will converge closer to the true bound. However, if the bound has stalled, or is only
making slow progress, it may be beneficial to change to the dynamic interpolation phase.

In Figure 4.8, we plot the lower bound of the widget producer example against total solu-
tion time for three methods: (1) the dynamic interpolation method; (2) the static interpolation
method with five ribs; and (3) the “hot-start” method using five ribs in the initial phase. We
terminate the static phase of the hybrid method using the bound stalling stopping rule discussed
in Section 2.3. For this example, we terminated the static interpolation phase when the bound
failed to improve after five iterations.
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Figure 4.8: Convergence of the lower bound over solution time for the dynamic (dashed), static
(dotted), and hot-start (solid) interpolation methods.

Because the static interpolation method samples a disperse range of price-states, the lower
bound is better than the dynamic interpolation method in the first five seconds. However, be-
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cause of the discretisation error, the static interpolation method does not converge, and the lower
bound stalls at approximately −$488.5. The hot-start method is equivalent to the static method
in the initial iterations by design. However, after the static interpolation phase has stalled for
five iterations, the hot-start method switches to the dynamic interpolation phase. It then quickly
converges to the bound we obtained previously of −$487.59. Note that after 20 seconds, the
dynamic interpolation method has not yet converged.

4.6 Summary

This chapter examined extensions to SDDP to enable the solution of multistage stochastic opti-
misation problems with stagewise-dependent noise in the objective. We compared two methods.
The static interpolation method discretises a priori the stagewise-dependent process into a num-
ber of ribs and constructs an approximation of the cost-to-go function at each rib. Due to the
discretisation, the method may not converge to the optimal solution. The second method, which
we refer to as the dynamic interpolation method, adds saddle-cuts at points in the stagewise-
dependent process sampled on the forward pass. Because the saddle-cuts are placed at sampled
points, Downward et al. [66] show that the method will converge an optimal solution almost
surely in a finite number of iterations.

We extended the convergence result of Downward et al. [66] to show that a broader class of
problems can be solved using the dynamic interpolation method. This extension allows some
multiplicative auto-regressive price processes to be included in the model.

We also applied both the static and dynamic interpolation methods to a simple example
and provided some advice for practitioners implementing and using the methods. Finally, we
explored a hybrid method that demonstrated improved computational performance compared
with the static and dynamic interpolation methods.

In Chapter 9 of this thesis, we apply the dynamic interpolation method to a dairy farming
model with milk price uncertainty.
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Chapter 5

Conclusion

5.1 Main results and contributions

In Part I of this thesis, we discussed the theory and computation of multistage stochastic optimi-
sation. In particular, we focused on stochastic dual dynamic programming (SDDP) as a solution
technique. The main contribution of Part I is the two software libraries we have developed for
multistage stochastic optimisation:

• SDDP.jl, a Julia library for stochastic dual dynamic programming; and

• DynamicProgramming.jl, a Julia library for stochastic dynamic programming.

In addition to those libraries, we made a number of theoretical contributions to the field.

• We proposed a new framework for communicating a class of multistage stochastic opti-
misation problems: the policy graph.

In particular, the policy graph can model discrete-time, multistage stochastic optimisation
problems with nested risk measures and finite discrete stagewise-independent random
variables.

• We conducted a literature review of the current state-of-the-art for stochastic dual dy-
namic programming.

In general, the computational improvements can be summarised into two categories: im-
provements that reduce the required number of iterations before convergence, and im-
provements that reduce the computation time of each iteration. We provided a summary
of the improvements in Figure 2.2.

• We found that SDDP is susceptible to numerical instability.

In one common case, solvers allow the primal solution of a state variable to be outside the
exact domain by some tolerance ε (e.g. x′t ∈ [l− ε, u+ ε]). When x′t is set as the value of
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xt+1 in the forward pass, this can result in infeasibilities. This can be fixed by projecting
the primal solution value back onto the exact domain in the forward pass.

• We found that dual degeneracy can lead to sub-optimal simulations of the optimal policy.

This has the troubling implication that simulating a policy that has converged to an opti-
mal solution can result in a sub-optimal sequence of controls.

• We described an algorithm for stochastic dual dynamic programming on an acyclic policy
graph.

This is a novel contribution as previous literature has focused on broad sub-classes such
as linear policy graphs [154], Markovian policy graphs [86, 161, 174], and special cases
such as models with a random numbers of stages [96].

• We described the practical implementation of the static and dynamic interpolation meth-
ods.

In particular, we raised a number of problems associated with the convergence of both
methods.

• We extended the convergence result of Downward et al. [66] to a broader class of models.

In particular, we showed that some multiplicative auto-regressive processes can be incor-
porated into the model. Such models are common in financial applications [71].

Summarised into a single finding, this half of thesis suggests that SDDP is a powerful tool
for solving multistage stochastic optimisation problems. However, it has a number of limitations
that are often overlooked in the literature. When analysing the results of a policy produced by
SDDP, careful consideration is needed to avoid misinterpreting the solution.

5.2 Future work

We began Part I by describing how the stochastic optimisation community is fragmented. Dif-
ferent communities use different terminology, and they do not routinely publish or share their
optimisation codes. This standard of “publication only” research has slowed progress in the
field as it limits the ability to rapidly build upon the findings of others [153].

For example, we saw in Chapter 2 how there are many different computational improve-
ments that have been suggested to SDDP. Many of the reported computational improvements
are likely to be problem-specific, and it can be difficult to isolate techniques that deliver large
benefits across a broad range of problems (e.g. cut selection), against those that may, at best,
offer a small improvement (e.g. scenario incrementation). Moreover, since the overhead of de-
veloping and maintaining a state-of-the-art implementation of SDDP is large, practitioners do
not compare new methods against the existing state-of-the-art or on a wide variety of problems.
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We also described a number of numerical issues and other bugs that we encountered when
developing SDDP.jl. Through experience, we have learned that developing an efficient,
generic, and correct implementation of multistage stochastic optimisation software such as
SDDP is difficult. Having each researcher independently re-invent this wheel is unnecessary.
Compounding the problem, since each researcher’s implementation is different, models are not
transferable between implementations. Therefore, it is difficult to replicate the findings in pub-
lished papers.

To address these concerns, we propose the following research directions.

• Develop an open-source suite of tools for solving multistage stochastic optimisation prob-
lems.

• Construct a large benchmark set of multistage stochastic optimisation test problems.

• Perform a computational analysis of the different solution methods and computational
improvements suggested in the literature.

In this thesis, we have attempted to remedy some of these issues by publishing SDDP.jl

and DynamicProgramming.jl, as well as the source-code for MOO, POWDER-I, and
POWDER-II (the models we construct in Part II of this thesis). Any ambiguity in the textual
descriptions of these models can be resolved by examining the source-code.

In addition to the three broad topics outlined above, we suggest the following as more spe-
cific directions one could take.

• Extend the SDDP algorithm to cyclic policy graphs.

We noted in Chapter 2, that the SDDP algorithm requires an acyclic policy graph. Indeed,
we neglected to even introduce cyclic policy graphs in Chapter 1. However, it should be
apparent to readers that a policy graph can include cycles in its definition. Some work has
been done on infinite horizon SDDP (e.g. Baucke [12], Nannicini et al. [143]); however,
we suggest extending the SDDP algorithm to acts on a general policy graph with an
arbitrary number of cycles.

• Explore the deterministic convergence methods of Baucke et al. [14] and Leclère et al.
[125].

We noted in Chapter 2 that the SDDP algorithm has no clear method of termination. If
they can be made computationally efficient, deterministic upper bounds, such as those
proposed by Baucke et al. [14] and Leclère et al. [125], resolve this termination question.
In addition, they may even reduce solution times by directing the solution search in ways
that are not provided by the current Monte Carlo simulation approach.

• Explore techniques from Benders decomposition for generating strong cuts when the pri-
mal subproblem is degenerate.
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A review paper by Rahmaniani et al. [173] discusses a number of computational improve-
ments that have been made to the Benders decomposition algorithm since its inception by
Benders [25]. However, aside from cut selection, few of these improvements have flowed
into the SDDP literature. It would be interesting to adapt many of the techniques pre-
sented by Rahmaniani et al. [173] to the SDDP setting and investigate their computational
benefit.

• Explore cut selection heuristics for the price interpolation methods.

We noted in Chapter 4 that the question of an appropriate cut selection heuristic for the
dynamic interpolation method is unresolved. Given that it is common to see an order of
magnitude improvement in solution times as a result of cut selection in the traditional
SDDP algorithm, this feature should be given a high priority to investigate.

• Explore hybrid methods for price interpolation.

Finally, we ended Chapter 4 with the description of a hybrid interpolation method that
demonstrated better computational performance than either the static or dynamic inter-
polation method. It would be interesting to study these hybrid methods in more detail in
order to further improve the computational performance of the interpolation methods.



Part II

Applications in the Dairy Industry
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Chapter 6

Introduction

Uncertainty in the agricultural supply sector has received increasing attention from researchers
and practitioners in recent years [33]. This is unsurprising given the inherent uncertainty in all
steps of the agricultural supply chain. In this half of the thesis, we focus on the first step in the
supply chain for dairy products – namely, the dairy farmer. Such farmers face two main types of
uncertainty: production uncertainty as a result of weather conditions, and price uncertainty from
international markets [72]. Ignoring these uncertain effects can lead to poor farming decisions.
In addition, dairy farmers are likely to be risk-averse due to the serious downside risks they
face. These risks range from financial (they may accrue too much debt and go into bankruptcy)
to biological (a lack of feed can lead to malnourished cows and animal-welfare issues). Further-
more, farms may be located in disparate geographic locations, and even farms that are located
in the same local area may have differences in topology and soil type between their paddocks.
Therefore, it is necessary to model conditions on an individual farm basis in order to produce
meaningful insight for the farmer. Although our models are generally applicable to a wide-class
of outdoor, pastoral farms, for this thesis we calibrate and test them in a New Zealand setting.

In New Zealand, dairy farming forms a large part of the economy, and in the 2016 season it
was responsible for 29% of New Zealand’s export earnings [10]. In addition, despite producing
only 3% of the total global production volume, New Zealand exports 96% of its domestic pro-
duction [188]. As a consequence, it is the largest player in the international dairy commodity
market with around 28% of international exports [188]. These factors make the operation of a
New Zealand dairy farm a critical component in the global dairy supply chain.

Established farmers in New Zealand largely rely on experience, low debt, efficiency, and
a financial buffer to help them survive economic downturns [192]. However, as dairy markets
liberalise and new environmentally focused domestic regulations (such as a proposed charge on
the commercial use of water [40]) are introduced, relying on previous experience may result
in sub-optimal decision-making. This decision-making is made up of two main components:
short-term operational planning, such as choosing how much feed to give the cows each day;
and long-term strategic planning, such as choosing the number of cows to farm. These decisions
are sequential and subject to uncertainty.
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In the first part of this thesis, we addressed the theory and computation of problems in-
volving sequential decision-making under uncertainty, which we called multistage stochastic

optimisation problems. Now, in this half of the thesis, we apply the tools and techniques devel-
oped in Part I to the multistage stochastic optimisation problem faced by pastoral dairy farmers.
We call this problem the pastoral dairy farmer problem, and we describe it in the next section.
(Our description assumes no prior knowledge of pastoral dairy farming. Readers familiar with
the industry may wish to skip the next section.)

6.1 The pastoral dairy farmer problem

Dairy farms raise cows for the purpose of milk production. These are different to farms which
raise cows1 for the purpose of meat production. In this half of the thesis, we examine pastoral

dairy farms, which rely on grass as their primary source of feed for the cows and are predomi-
nant in places like New Zealand, Ireland, and Argentina [120]. We do not consider the indoor
farming systems prevalent in the United States and Europe.

A group of cows on a farm is referred to as a herd. Within a herd, there will be cows of
different ages, breeds, and sizes. However, in this thesis, we overlook this complication and
assume that all of the cows within a herd are identical. In addition, some farms may have
multiple herds. In this thesis, we only consider a single herd. On a farm, the number of cows
per hectare is termed the stocking rate. The stocking rate is an important strategic level decision
for a farmer as it has consequences for future decision-making.

The predominant crop grown on pastoral farms is ryegrass (Lolium L.). However, other
crops such as clover (Trifolium repens), lucerne (Medicago sativa), and chicory (Cichorium in-

tybus) may also be grown. Since these crops are not grasses, the literature refers to the collective
crops grown on pastoral dairy farms as herbage. However, to avoid confusing readers who may
be unfamiliar with the dairy industry, we use the term grass. The land that is used to grow grass
is referred to as pasture.

Pasture is subdivided into fenced areas called paddocks. Paddocks are typically grazed in
sequence by the herd over a multi-week rotation. In most circumstances, the herd will graze a
paddock during the day and a different paddock during the night. After grazing, the paddock
is rested for a period of time (typically 20–30 days, although it varies during the year; referred
to as the rotation length) before it is grazed again. This creates a distribution of grass height
over the farm at any point in time. We refer to the mass of grass per unit area as the pasture

cover (measured in kg/ha). In this thesis, we measure the pasture cover in terms of kilograms
of dry matter2 above ground level.3 Furthermore, we make the simplifying assumption that all
paddocks are identical at all times. Therefore, we represent the quantity of grass on the farm

1Since cow refers to the female gender, we really mean cattle (i.e. male and female animals) here.
2The mass of grass excluding the water content.
3Since cows will not eat all of the grass to ground level, other conventions exist, such as measuring the quantity

of grass above a set height.
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by the average pasture cover. As a consequence, we also exclude the ability of the farmer to
manage the rotation length. The grass on the farm grows at an uncertain rate due to the weather,
as well as the current level of pasture cover (since if there is no grass, none can grow).

Since pastoral farms rely on grass growth, which is driven by sunlight and rainfall, their
operations are strongly tied to the seasons. These operations can be broken down into yearly
cycles, each of which we term a season. In this thesis we model the season using a spring

calving pattern that is common in New Zealand.4 The season begins around August (in New
Zealand) with each cow giving birth. This triggers each cow to begin producing milk. We call
cows that are producing milk lactating cows and the process of producing milk lactation. In
a real herd, there will be some distribution of calving dates; however, since we assume that
all the cows are identical, we assume that all of the cows calve on the same day. After giving
birth, most farmers will milk the cows twice-a-day. (Other systems exist, such as once-a-day
milking, and even one milking every 18 hours. Our models could easily be modified to handle
such cases.)

One important indicator of animal health is the Body Condition Score (BCS), a subjective
assessment of the proportion of body fat in a cow [178]. In this thesis, we use the United States
system of a five-point scale, where 1 represents an emaciated cow, and 5 represents an obese
cow. A typical range is between 2.5 and 3.5. At the start of the season (i.e. when the cow gives
birth), a Body Condition Score at the top of this range is associated with improved profitability
and health during the season [178].

Each day, the farmer must make a set of decisions regarding the operation of their farm. The
decisions they make today impact the decisions they can make tomorrow. There are three main
operational decisions that a farmer must make each day.

First, they must decide the quantity of grass to feed the herd. However, farmers cannot force
cows to graze pasture. Instead, farmers place the herd in a paddock with a given pasture cover.
In response, the herd consumes some proportion of the offered quantity based on the time of
year, quality of grass, and other factors. The farmer can control the quantity of grass to offer
by paddock selection (for size and pasture cover) or by subdividing a paddock using temporary
fencing. In this thesis we ignore these complications and assume that the farmer can offer any
quantity of grass.

Second, each day the farmer must decide the quantity of supplement to feed the herd. Sup-
plement is feed that is not grown on the farm but is imported. Common supplementary feeds in
New Zealand include palm kernel, maize, and oats [48]. The two main uses of supplement are
to boost milk production and manage temporary feed shortages [60]. We refer to the percentage
of total feed that is imported over the season as the supplementation intensity. Choosing this
intensity level is an important strategic level decision for the farmer.

Third, one of the most important decisions a farmer must make is when to dry-off their

4Some farmers adopt different calving patterns such as autumn calving in order to produce milk during the New
Zealand winter, thereby capturing a premium for the milk they produce.
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cows. A cow starts the season after giving birth to a calf and therefore begins producing milk.
If the farmer keeps milking the cow on a regular basis and the cow remains in good health, the
cow will continue to produce milk. However, due to low feed quality or low feed availability
towards the end of the season, the energy spent producing milk may come at the expense of
animal health (as measured by the Body Condition Score). Therefore, to reduce the energy
expenditure of the cow so that more energy can be spent increasing fat reserves, the farmer may
choose to dry-off the cow. This action causes the cow to cease milk production. After this point,
the mammary glands stop secreting milk until another calf is born. Therefore, the farmer faces a
trade-off between extending lactation in order to increase milk production, and halting lactation
in order to improve animal condition for the next season. We refer to the length of time that the
cow is milking as the lactation length. In New Zealand, the average lactation length is around
276 days [53].

A final complication is the mechanism by which farmers are paid for milk. The majority
(84%) of dairy farmers in New Zealand supply milk to Fonterra, a large milk processing co-
operative [197]. However, they are not paid for their milk on delivery. Instead, at the end of
each season (one year), they are back-paid an end-of-season milk price for each kilogram of
milk solids supplied during the preceding season.5 This end-of-season milk price is calculated
from a series of international auctions for dairy commodity products that occur during the year.
Therefore, at the start of the season there is some uncertainty surrounding the end-of-season
milk price since the auctions have not yet occurred. To help guide the farmers in their decision-
making, Fonterra releases a sequence of forecast milk prices during the season. As the season
progresses, this sequence of forecast milk prices trends toward the end-of-season milk price.

Therefore, during each season, the farmer faces a multistage stochastic optimisation prob-
lem that we term the Pastoral Dairy Farmer Problem.

The Pastoral Dairy Farmer Problem

maximise: revenue from milk production less operating costs
by deciding: the number of cows to farm

the quantity of supplement to feed
the quantity of grass to feed
when to dry-off the herd

subject to: obtaining a high Body Condition Score at the end of the season
uncertainty in the rate of future grass growth
uncertainty in the price of milk.

In this half of the thesis we investigate various aspects of the Pastoral Dairy Farmer Prob-

5In reality, this process is more complicated, since it involves part-payments during the season and a series of
wash-up payments after the season has finished. However, the net effect of these payments is the same as we have
described.
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lem. Although we focus on the New Zealand dairy industry, “the reader, by means of a simple
transformation of the situations, will be able to conceive many questions of similar nature.”6

6.2 Literature review

In the previous section we described two important variables in the Pastoral Dairy Farmer Prob-
lem: the stocking rate (number of cows per hectare) and the supplementation intensity (quantity
of feed imported to the farm).

New Zealand has a five-point scale for describing the supplementation intensity ranging
from System One (no feed imported) to System Five (more than 25% of feed is imported) [49].
From the 2007/08 to the 2014/15 season, the percentage of System One and System Two farms
decreased from 44% to 32%, signalling a shift in farming methodologies towards increased
supplementation [46, 50]. An analysis by Dairy NZ [50] found that the operating profit per
hectare increased as the proportion of feed imported increased. However, the same analysis
found that System One and System Two farms had a lower debt-to-asset ratio than System Four
and System Five farms. Therefore, low-intensity farmers may be better placed to cope with
milk price volatility [192].

Farmers must also decide how many cows to farm. From the 2007/08 to the 2014/15 season,
the average stocking rate in New Zealand increased from 2.79 cows/ha to 2.87 cows/ha [46,
50]. Moreover, in the 2014/15 season, System One and System Two farms had an average
stocking rate of 2.5 cows/ha compared with 3 cows/ha for System Four and System Five farms
[50]. Combined with the trend towards higher input farming systems (i.e. System Four and
Five), there is evidence of a positive correlation between the supplementation intensity and the
stocking rate on New Zealand dairy farms.

Considerable research has been conducted to understand the impact of the stocking rate
and supplementation intensity on farm profitability, including controlled field trials [133–135],
“what-if” case studies [60, 211], and the construction of mathematical models of single animals
[15, 36, 89, 123] and whole farm systems [19, 64, 114, 124, 184]. Although the exact results
of these studies vary depending upon environmental (e.g. rainfall, soil type), economic (e.g.
milk price, supplement cost), and biological (e.g. breed of cows) factors, the literature can be
summarised into a single trend: on average, high intensity farming systems (i.e. System Four or
Five on the five-point scale) are the most profitable; however, low-input, low-intensive farming
systems (i.e. System One or Two) are more profitable when the milk price is low.

Regarding the mathematical modelling approach, we direct readers to review papers by
Bryant and Snow [37], Feola et al. [74], and Snow et al. [193]. Few of the models explored
in these reviews incorporated optimisation. Authors that did incorporate optimisation usually
implemented some form of an evolutionary search algorithm (e.g. [7, 91, 102, 144]).

6To borrow a phrase from Bellman and Dreyfus [24, p. 27].
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One notable exception to this is the Integrated Dairy Enterprise Analysis (IDEA) [65], a
nonlinear optimisation model of a pastoral dairy farm, which we consider to be the current
state-of-the-art. IDEA divides the dairy farming season into fortnightly blocks and maximises
operating profit. Decision variables in IDEA include a number of operational decisions (such
as the type and quantity of supplement to buy and feed each fortnight), as well as some strategic
decisions such as stocking rate. A detailed description of the model is given in Doole et al.
[64]. IDEA has been used to investigate various aspects of New Zealand dairy farms, including
supplementary feeding [60], reducing greenhouse gas emissions [1, 61], stocking rates [63,
182, 183], and general profitability [62]. Although IDEA is a useful tool to investigate locally
optimal management strategies, due to the use of nonlinear optimisation it is difficult to claim
that the solutions it produces are global optima.

IDEA shows how we can model the farming season as a deterministic sequential decision-
making process. When uncertainty is incorporated, the problem becomes a multistage stochastic
optimisation problem of the type we discussed in the first half of this thesis. In a recent review
paper, Borodin et al. [33] lay out the state-of-the-art in handling uncertainty in agricultural
supply chain management. They conducted a wide survey of papers, and a number of stochastic
programming approaches were identified as being used in the literature. Most were two-stage
models, and only a few were concerned with dairy [75, 93, 103, 175]. The paper of Guan and
Philpott [93] is a notable exception in that it formulates, and solves, a large multistage stochastic
optimisation problem. However, it concerns the operations of a large dairy processing company,
rather than an individual farmer.

In their review, Borodin et al. [33] note that “multistage stochastic programs, in general,
are intractable,” and that “even if the use of [multistage stochastic programming] is showing in-
creasing promise, there are still very few real-world implementations ... in the agricultural area.”
However, multistage stochastic programming has been widely applied to real-world problems in
the electricity sector with considerable success (for example, in Brazil [136]). A key contributor
to this has been the development [154, 162] and improvement [56, 161] of the stochastic dual

dynamic programming (SDDP) algorithm, which we described in the first half of this thesis.

For readers who have not read the first half of this thesis, SDDP is a dynamic programming-
inspired algorithm for solving multistage stochastic optimisation problems. It decomposes the
multistage stochastic optimisation problem in time into a series of sequential subproblems. Each
subproblem (typically associated with a discrete interval in time) is an optimisation problem that
chooses an action in order to minimise the cost associated with the current decision, plus the
cost-to-go of the remaining stages given the action is taken. Traditional dynamic programming
[23] estimates the cost-to-go function (also called the Bellman function) at a set of discretised
points. However, because of this discretisation, the method is limited to low-dimensional prob-
lems (dynamic programming’s “curse of dimensionality”). Instead of evaluating the function
at a set of discretised points, SDDP approximates the Bellman function with a set of piece-
wise linear functions called cuts. When the problem instance has a specific form (stagewise
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independence of the random variable, convexity of the Bellman function, and continuous state
variables), the SDDP algorithm can efficiently find an optimal policy (to within some bound).

6.3 Objective and outline

There are two main objectives for this half of the thesis: (1) to investigate the trade-off between
stocking rate and supplementation intensity; and (2) to investigate the impact of weather and
price uncertainty on the management actions of a dairy farmer.

This half of the thesis is structured into three chapters, each of which analyses a different
component of pastoral dairy farming through the lens of multistage optimisation. The first,
Chapter 7, stands apart from Chapters 8 and 9 in that it uses dynamic programming as a so-
lution method instead of stochastic dual dynamic programming and does not include weather
uncertainty. The remaining two chapters are related and should be read in sequence.

The first of the three chapters, Chapter 7, develops MOO – the Milk Output Optimiser.
MOO is a dynamic program based on E-Cow, a nonlinear model of a single dairy cow [18]. We
present a case study in which we use MOO to analyse the trade-off that a selected farmer in the
Bay of Plenty region of New Zealand makes between their stocking rate and supplementation
intensity. We find that the current farm set-up is sub-optimal; operating profit could be increased
by decreasing the stocking rate, or by increasing the supplementation intensity. However, since
MOO is a dynamic program, we run into the “curse of dimensionality.” This prevents further
extensions to MOO and limits our ability to add uncertainty.

The second of the three chapters, Chapter 8, develops POWDER – the milk Production Op-
timiser incorporating Weather Dynamics and Economic Risk. Compared to MOO, POWDER
makes a number of simplifications in order to escape the curse of dimensionality. However,
it includes weather uncertainty and a simple stochastic model for the price of milk. We apply
POWDER to the same farm discussed in Chapter 7 and show that the farmer’s actions depend
on the price of milk. If the milk price is high, the farmer purchases more supplement and delays
the decision to dry-off their cows. If the milk price is low, the opposite is true. We also con-
firm the finding from Chapter 7 that the farm is over-stocked, and that operating profit could be
increased by decreasing the stocking rate.

Finally, Chapter 9 extends the POWDER model developed in Chapter 8 to accommodate two
alternative auto-regressive models for the end-of-season milk price and the ability of the farmer
to forward contract their milk. Again, we apply POWDER to the same farm discussed in the
previous two chapters. We find that without contracting, the farmer has little recourse to manage
their downside risk since most of their risk is due to the price of milk, rather than environmental
risks such as drought. In contrast, forward contracts for milk allow the farmer to mitigate
most of their downside risk in exchange for a small decrease in their expected operating profit.
We also investigate a number of other hypothetical risk management tools such as weather
derivatives, but find that these would offer limited benefit to our farmer.
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6.4 Units

Before we begin, we advise the reader of two important points regarding the units that we use
in this half of the thesis.

First, when we discuss the milk, we do so in terms of kilograms of milk solids. Milk
solids are the fat and protein components of liquid milk (i.e. milk, excluding water and lactose).
Typically, kilograms of milk solids are denoted kgMS. However, to avoid confusing readers
unfamiliar with the dairy industry, we shall use units of kg. At no point will we refer to liquid
milk in terms of litres.

Second, when we discuss feed (e.g. palm kernel, grass, etc.), we refer to it on the basis of
kilograms of dry matter. Similar to milk solids, dry matter refers to the mass of a feed after
the water has been removed. Typically, kilograms of dry matter are denoted kgDM. However,
following a similar argument to the one we used for milk solids, we shall use kg. In addition
to this, when discussing supplement (e.g. palm kernel), we refer to the quantity of dry matter
consumed by the cow. At no point shall we refer to supplement via its weight as fed by the
farmer. In addition, we will not explicitly account for losses like wastage and spoilage; these
are accounted for in the cost per kilogram of dry matter consumed.



Chapter 7

Optimising stocking rates and
supplementary feeding

In this chapter we embed the E-Cow [18] model of a dairy cow into a dynamic program. We
call this dynamic program MOO – the Milk Output Optimiser. MOO breaks the dairy farming
season into weekly intervals and calculates the optimal actions the farmer should make each
week. We use MOO to investigate the trade-off a selected farmer faces between their stocking
rate and supplementation intensity. Our findings reinforce empirical evidence that high-input,
high-stocking rate farms are the most profitable farms in expectation, but, if the farmer is risk-
averse, they should reduce their intensification level by purchasing less supplement and by
lowering their stocking rate.

For brevity, we do not provide a complete description of the MOO model or a list of all
the parameter values used. Instead, we provide the Julia code to implement MOO, as well
as the data needed to run the case study and replicate the results in this chapter, at https:
//github.com/odow/MOO.

The chapter is laid out as follows. First, in Section 7.1 we analyse a simple example in
order to gain an intuitive understanding of the problem. Then, in Section 7.2, we formulate
MOO as a multistage deterministic optimisation problem. In Section 7.3, we apply MOO in
a case study to a farm in the Bay of Plenty region of New Zealand. In Section 7.4 we extend
MOO to model the trade-off between stocking rate and supplementation intensity as a two-
stage stochastic program. We finish the chapter with a discussion in Section 7.5 and some
summarising remarks in Section 7.6.

7.1 A simple model

Before we introduce MOO, it is useful to analyse a simple example in order to gain some
intuition behind the problems faced by dairy farmers and the kind of results we can expect. In
particular, we analyse the trade-off between the stocking rate (the number of cows per hectare)
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and the total quantity of feed available.

Consider a farm that has a stocking rate of ρ cows/ha. Each day, the farmer feeds each
cow q kg of feed. The cow consumes q̄ kg/day of the feed for maintenance (i.e. the quantity
needed each day to stay alive) and apportions the rest (q − q̄ kg/day) to milk production. The
maintenance is a minimum requirement, so q ≥ q̄. In response to consuming q − q̄ kg/day
of feed for milk production, the cow produces f(q − q̄) kg/day of milk. Since there is some
biological maximum quantity of milk that can be produced by the cow, the law of diminishing
returns applies. Thus, we assume f is a concave, non-decreasing function of the quantity of
feed allocated to milk production. Finally, we assume that the farmer has a total quantity Q of
feed available each day (kg/ha/day). (We normalise this value to a per hectare value, and we do
not distinguish between grass and supplementary feed such as palm kernel.)

Therefore, given a total quantity Q of feed available (kg/ha/day), the farmer’s job is to
choose a stocking rate ρ (cows/ha) and a per cow quantity of feed q (kg/cow/day) in order to
maximise total milk production:

Total Milk Production(Q) = max
ρ,q

ρ× f(q − q̄)
s.t. ρ× q ≤ Q

q ≥ q̄.

We now consider a simplistic animal model in which the cow requires q̄ =2.75 kg/day of
feed for maintenance. For every extra 7.5 kilograms of feed the cow consumes, they produce 1
kg of milk, up to a limit of 2 kg of milk per day (i.e. a maximum intake of extra feed for milk
production of 15 kg/day). These values, and the assumption that milk production increases
linearly with feed intake, were based on rough averages calculated by Dairy NZ [48].

Therefore, the optimisation problem faced by the farmer is:

Total Milk Production(Q) = max
q,ρ

ρ× (q − 2.75) /7.5

s.t. ρ× q ≤ Q

2.75 ≤ q ≤ 17.75,

which has the optimal solution of q = 17.75 and ρ = Q
17.75

for any given Q. In Figure 7.1 we
illustrate the trade-offs faced by a farmer.

If we choose a fixed quantity of feedQ and then increase the stocking rate ρ from zero, there
is sufficient feed available for each additional cow to produce the maximum quantity of milk
of 2 kg/cow/day. Therefore, milk production increases linearly as the stocking rate ρ increases.
When the stocking rate reaches ρ = Q/17.75 cows/ha, each cow is producing 2 kg/cow/day
of milk, and the total quantity of feed available is consumed. As we increase the stocking rate
further, the total available feed Q is distributed among more cows. Therefore, the quantity q
that each cow receives decreases, and the corresponding decrease in milk production per cow
is more than the increase in milk production from the additional cow. Therefore, total milk



Chapter 7. The Milk Output Optimiser 115

0 10 20 30 40 50 60
0

1

2

3

0

1

2

3

4

5

6

Figure 7.1: Contour plot showing the total quantity of milk produced (kg/ha/day) as the total
quantity of feed available Q and the stocking rate ρ are varied.

production decreases. Once the stocking rate ρ exceeds Q/2.75 cows/ha, the feed required for
maintenance, ρq̄, exceeds the total available quantity, and the solution is infeasible.

Farmers make this trade-off by choosing a stocking rate ρ at the start of the season when
the total quantity of available feed Q is unknown (due to uncertain grass growth, or uncertain
price of supplement). If they choose a stocking rate that is too low, they may under-utilise their
pasture and forego revenue. If they choose a stocking rate that is too high, they may under-utilise
their cows by spending too much feed on maintenance.

In the remainder of this chapter, we investigate this trade-off using E-Cow, a detailed animal
model of a single cow [18]. In particular, the maintenance requirement q̄ and the shape of the
milk production function f(q − q̄) are not fixed in E-Cow; instead, they vary depending on the
time of year, health of the cow, and many other factors. As we shall see, the results we obtain
using E-Cow (e.g. Figure 7.6) are different from those above, but they obey similar principles.

7.2 Formulation

In this section we formulate MOO as a multistage deterministic optimisation problem that mod-
els, using E-Cow [18], a cow over a single season (i.e. one year). The objective of the farmer
is to maximise revenue (from selling milk), while meeting various animal welfare constraints.
However, before we detail the specifics of the multistage deterministic optimisation model, we
begin with a brief description of E-Cow, the animal model that forms the basis for MOO.

7.2.1 The E-Cow model

E-Cow [18] is a nonlinear system of equations that approximates the biological workings of
a dairy cow. The model first predicts the energy intake of a cow given factors such as feed
availability, feed quality, and the number of days since the cow’s last calving. Then, energy is
set aside for the maximum rate of milk production, genetically driven fat deposition, pregnancy,
and maintenance (the energy required to maintain basic life functions such as basal metabolism,
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digestion, and exercise). Any negative energy imbalance is resolved by reducing the quantity
of energy apportioned to milk production and fat deposition (i.e. by reducing the rate of accu-
mulation, or increasing the rate of burning, of fat reserves). Since we assume that the cow is
producing the maximum rate of milk production, any positive energy balance is resolved by
allocating all of the excess energy to building fat reserves.

E-Cow can predict a range of factors including grass intake, milk production, and Body
Condition Score (BCS). The BCS is a subjective assessment of the proportion of body fat in
a cow and is used by farmers as an important indicator of animal health [178]. E-Cow uses
the United States system of a five-point scale, where 1 represents an emaciated cow, and 5 rep-
resents an obese cow. The E-Cow model has been previously validated against experimental
data for New Zealand Holstein-Friesian cows that were grazed on predominantly pasture diets
(i.e. less than 50% supplementation). E-Cow integrates three existing published models: grass
intake [17], milk production [203], and body condition change [79]. It is a deterministic simu-
lation with a daily time-step and has been implemented in a web interface [16]. For brevity we
have chosen to omit the full formulation here; however, readers are directed to Baudracco [15]
for the original formulation or to the GitHub repository1 for our implementation in Julia [28].

There are three main decisions that the farmer must make in each time step: the quantity
of grass to offer, the quantity of supplement to offer, and whether to dry-off the cow. We now
describe each of these three decisions.

First, when ‘feeding’ the E-Cow, the farmer cannot force the cow to consume grass; instead,
the farmer offers a quantity of grass by placing the cow (or the herd) in a paddock with a given
pasture cover (the quantity of grass per hectare). The farmer can control the quantity of grass
to offer by paddock selection (for size and pasture cover) or by subdividing a paddock using
temporary fencing. In this thesis, we ignore these complications and assume that the farmer
can offer any quantity of grass. In response to being offered some grass, the cow will consume
some proportion of the offered quantity based on the time of year, net energy deficit, quality of
grass, and other factors.

Second, the farmer chooses a quantity of supplement to feed. If the farmer feeds supplement,
some substitution will occur as the cow reduces its grass intake to compensate for the supple-
ment intake. E-Cow assumes that the cow preferentially consumes supplement over grass from
pasture.

Finally, one of the most important decisions a farmer must make is when to dry-off their
cows. This action causes the cow’s mammary glands to stop secreting milk until another calf
is born. However, this reduces the energy requirements of the cow, allowing it to increase its
fat reserves. Therefore, the farmer faces a trade-off between extending lactation in order to
increase milk production and halting lactation in order to improve animal condition for the next
season.

We chose E-Cow as an animal model for two reasons. First, the model is simpler than other

1https://github.com/odow/MOO

https://github.com/odow/MOO
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animal models such as MINDY [89], IDEA [64], and Dairy-Mod [114]. This is important as we
shall see that despite coding the model in the fast, numerical computing language Julia [28] and
exploiting parallelism, solve times are on the order of hours. Moreover, our solution method
(backward recursion – see Appendix A) scales poorly. Therefore, increasing the complexity of
the model could create solve times on the order of days. Second, the E-Cow model has been
validated against experimental data for New Zealand Holstein-Friesian cows in New Zealand
conditions [18].

Example simulation

To give the reader a better understanding of the inputs and outputs that are modelled in E-Cow,
we coded a simulation model of E-Cow in the Julia programming language [28].

Four inputs are required by the E-Cow simulation: a calibrated set of parameters that define
the cow; the quantity of grass to offer each day; the quantity of supplement to feed each day;
and the number of weeks to milk the cow.

The E-Cow model can be calibrated to different animal breeds. In this example, and the rest
of this chapter, we use the constants given in Baudracco et al. [16] for a New Zealand Holstein-
Friesian. For simplicity in this example, the farmer offers 35 kg/day of grass (containing 10.3
MJ/kg)2, the cow consumes 2 kg/day of supplement (containing 11.5 MJ/kg), and the cow is
milked for 40 weeks.

Using these four inputs, our implementation simulates the evolution of five key output vari-
ables each day over one year (365 days). The five output variables are the Body Condition
Score, the energy required for maintenance, the quantity of milk solids produced, the quantity
of grass consumed, and the quantity of supplement consumed. In Figure 7.2, we plot these five
output variables against the day of the season.

The cow begins the season with a Body Condition Score of 3.2 (Figure 7.2a). During the
first 100 days, the cow loses body condition. The reason for this is that the cow produces milk
at the expense of its fat reserves in order to provide for the calf it has just given birth to. At
day 112, the cow conceives a new calf. After this point, the cow stops losing body condition
and focuses on regaining its fat reserves. However, the rate at which it can gain fat is limited
by the quantity of food available. At day 280 (i.e. 40 weeks), the farmer stops milking the cow,
allowing the animal to focus its energy on regaining body condition in preparation for the next
season. This explains the rapid accumulation of body condition in the last part of the season.

E-Cow defines the concept of energy required for maintenance as a delayed response to
actions taken in the previous time step. This depends on factors such as the quantity of grass
grazed and the quantity of milk produced. All else being equal, a cow with a greater Body Con-
dition Score, or that consumes more food, or that produces more milk, will require a greater
amount of energy the following day for maintenance than an otherwise identical cow. In Figure

2We really mean MJ ME/kgDM – the megajoules of metabolisable energy per kilogram of dry-matter.
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Figure 7.2: Output variables from a simulation of a single cow using the E-Cow model: (a) the
Body Condition Score; (b) the energy required for maintenance (MJ/day); (c) the quantity of
milk solids produced (kg/day); (d) the quantity of grass consumed (kg/day); and (e) the quantity
of supplement consumed (kg/day).

7.2b, we see that the energy required for maintenance rises during the first 10 days, correspond-
ing to the rise in milk solids production. However, after this point, the energy required decreases
as the body condition and milk solids production decrease. After conception on day 112, the
energy required for maintenance increases due to the increase in body condition. After day 280,
the cow is dried-off, causing a sudden drop in the energy required for maintenance. However,
after this point, the energy required for maintenance increases again due to the increase in body
condition.

When consuming grass, the E-Cow model considers factors such as grass quality, grass
availability, and the energy requirements of the cow. In this example, we offered the cow 35
kg/day of grass. The E-Cow model predicts (see Figure 7.2d) that, in addition to the 2 kg/day
of supplement (Figure 7.2e), the cow will consume only 12.5 kg/day of the offered quantity of
grass. After day 280, the energy requirement of the cow decreases due to the suspension of milk
production. Therefore, the cow is less driven to consume grass, explaining the sudden drop in
feed intake (Figure 7.2d).

Figure 7.2c plots the quantity of milk solids produced by the cow per day across the season.
During the first 20 days of the season, there is a rise in milk solids production due to the
biological workings of the cow. After this early peak, and until conception (at day 112), the cow
sustains a higher rate of milk production (compared with days 112-280) due to the conversion
of body condition (i.e. fat) into energy for milk production. After day 280, the cow is dried-off
and milk production ceases.
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7.2.2 The MOO model

MOO is a multistage deterministic optimisation problem that we solve using dynamic program-

ming (see Appendix A). In this section, we describe MOO using the notation outlined in Chapter
1. However, note that in this model there is no uncertainty. Therefore, there are no noise terms.

To aid the reader’s understanding, we provide a diagram of the model in Figure 7.3 using
the diagramming conventions of System Dynamics [194]. States are in square boxes. Controls
that can be chosen by the farmer are named in bold underlined text.

BCS

Lactation

Pasture
CoverGrass Growth Feed Grass

Energy Intake

Energy Required

Net Energy

Milk Production

Profit+

-
+

+

+

+

+

+

Dry-off

B

+

+

B

+

+

Maintenance

+ Feed Supplement

+

-

Figure 7.3: System Dynamics diagram of the MOO model.

We now describe the stages, states, controls, transition function, constraints, and stage-
objective that comprise our multistage deterministic optimisation problem.

Stages MOO divides the dairy farming season (i.e. one year) into 52 weekly stages t = 1, 2,
. . . , 52. In each week, we choose a control (e.g. the quantity of grass to offer the cow each day),
but we simulate the control through E-Cow on a daily basis. This reduces the computational
effort compared with solving an optimisation problem with 365 stages (one for each day).

State variables There are four state variables in the model. Each variable is indexed by week
t and corresponds to the value at the beginning of week t. The state variables are:

(1) the Body Condition Score xbt ;
(2) the energy required for maintenance xet (MJ/day);
(3) the lactation status xlt; and
(4) the average pasture cover xgt (kg/ha).

We use the value xlt = 1 to code when the cow is lactating at time t, and the value xlt = 0 to
code when the cow is dried-off and thus not lactating. In addition, we use xt = (xbt , x

e
t , x

l
t, x

g
t )

to denote the state of the system at the start of week t.
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Control variables The farmer has three different actions they can use to change the state of
the system during week t. They are:

(1) the quantity ust of supplement to feed each cow, each day, during week t (kg/cow/day);
(2) the quantity ugt of grass to offer each cow, each day, during week t (kg/cow/day); and
(3) a dry-off decision ult made at the end of week t.

We use the value ult = 1 to denote the decision to stop milking the cow at the end of week t
and the value ult = 0 to denote the decision to maintain the current state. In addition, we use
ut = (ust , u

g
t , u

l
t) to represent the control chosen by the farmer in week t. Finally, note that ugt is

not the quantity consumed by the cow. (As we explained earlier, the quantity of grass consumed
by the cow is determined by the E-Cow system of equations.)

Transition function We define the dynamics of the system as a nonlinear function that maps
the current state xt to a new state xt+1, given the control ut such that xt+1 = Tt(xt, ut). For
brevity we have chosen to omit the full formulation of Tt(·). Instead, readers are directed to
Baudracco [15] for a more detailed explanation or to the GitHub repository3 for our implemen-
tation in Julia [28].

It is important to reiterate that although the transition function acts on a weekly time step, we
have not aggregated the E-Cow model into a weekly time step. Instead, the transition function
acts over a weekly time step by simulating E-Cow on a daily basis, holding the control ut
constant for each day in week t. This results in some loss of solution quality (since the optimal
decision may be to dry-off halfway through a week) but reduces the computational complexity
of the optimisation model.

Constraints When choosing the control ut we must respect a set of constraints. For example,
once the cow is dried-off we cannot resume milking it. Therefore, we have the constraint that:

xlt+1 ≤ xlt.

In addition, even though that dairy farming is a multi-year enterprise, the natural structure
of the dairy farming season allows us to model the farm system as a finite horizon problem.
However, in order to ensure that the farm is in an adequate state for the following season, we
force the Body Condition Score at the start of the 53rd week xb53 and pasture cover xg53 to be
greater than, or equal to, their initial values (xb1 = 3.2 and xg1 = 2500). This creates a steady
state solution but ignores the fact that cows age over time and have a finite lifespan.

We denote the set of constraints by ut ∈ Ut(xt).

3https://github.com/odow/MOO

https://github.com/odow/MOO
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Stage-objective The objective of the farmer is to minimise cost. This cost comes from pur-
chasing supplement, less the profit from selling milk. The quantity of milk solids produced by
the cow is a nonlinear functionMt(xt, ut) of the state of the cow xt and feeding actions ut taken
by the farmer. (Again, this function is defined by the E-Cow model, so for brevity we do not
provide the full formulation.) Therefore, the stage-objective for stage t is:

Ct(xt, ut) = ρ× (cs × ust − pm ×Mt(xt, ut)) , t = 1, 2, . . . , 52, (7.1)

where ρ is the stocking rate (cows/ha), pm is the price of milk solids ($/kg), and cs is the cost of
supplement ($/kg). These values are set as constants in the model.

Policy graph We model this problem using a linear policy graph with 52 stages, one for each
week t = 1, 2, . . . 52. Since there is no uncertainty, each subproblem is deterministic. The
formulation of the subproblem in week t is:

Dt(xt) : Vt(xt) = min
ut

Ct(xt, ut) + Vt+1(xt+1)

s.t. xt+1 = Tt(xt, ut)

ut ∈ Ut(xt),
(7.2)

where V53(·) = 0. The objective of the farmer is to minimise V1(x1).

7.3 Case study

In this section, we investigate the application of MOO to a working dairy farm in the Bay of
Plenty region of New Zealand. For simplicity, we shall refer to it as the farm. The results
we obtain will be specific to our chosen farm; however, the study can easily be repeated for
different farms.

Supplementation Until this point, we have discussed “supplement” in generic terms. This is
because the E-Cow model can be parameterised to model different types of supplement. In the
remainder of this chapter we assume that the farmer chooses palm kernel as their supplement.
Palm kernel is a by-product of the production of palm oil. It is commonly used as a supplemen-
tary feed on New Zealand farms as it has a high energy content, is easily obtained (typically
arriving on-farm within a day or two of ordering), and is relatively inexpensive [45]. We ignore
other supplementary feeds such as maize but note that they can easily be added into our model.

7.3.1 Calibration

The majority of the parameters in MOO are part of the E-Cow model. For these parameters,
we used the values given in Baudracco et al. [18] for a New Zealand Holstein-Friesian. In



122 Chapter 7. The Milk Output Optimiser

addition to the E-Cow parameters, MOO contains parameters for the price of milk pm, the
cost of supplement (i.e. palm kernel) cs, the stocking rate ρ, and the grass growth rate gt (in
kg/ha/week for each week t = 1, 2, . . . , 52). We now detail how we calibrated these parameters
for the case study.

DairyBase is a voluntary database of financial and physical key performance indicators for
New Zealand dairy farmers [51]. It provides a standardised reporting mechanism that can be
used to benchmark a farm’s performance. The owner of the farm investigated in this case
study provided us with access to their DairyBase data for the 2013/14 and 2014/15 production
seasons. The data included information such as the total milk solids production per hectare, the
quantity of pasture and palm kernel eaten, and the lactation length. It also included a detailed
break-down of operating expenditure. We provide a summary of the data in Table 7.1. We draw
the reader’s attention to two items. First, the palm kernel cost is not the price per tonne from
the supplier (typically $275/t-$350/t for palm kernel [50]) but includes the additional costs of
storage, as well as wastage and spoilage. Second, the line item Fixed Expenses accounts for all
costs excluding the cost of palm kernel. This allows us to standardise the operating profit per
hectare between seasons to account for changes in milk price and palm kernel costs.

2013/14 2014/15 Average
Stocking Rate (cows/ha) 3 3 3

Milk Price ($/kg) 8.40 4.40 6.40
Milk Production (kg/ha) 1,240 1,146 1193
Lactation Length (days) 275 256 266

Pasture Consumption (t/ha) 12.6 11.7 12.15
Palm Kernel Consumption (t/ha) 2.8 2.9 2.85

Palm Kernel Cost ($/t) 473 419 446
Fixed Expenses ($/ha) 3512 3560 3536

Table 7.1: Summary data for the farm over two seasons, and the average of these.

Based on the DairyBase data, we set the stocking rate ρ to 3 cows/ha, the price of milk
pm to $6/kg, and the cost of palm kernel cs to $0.5/kg. However, the farmer has no long-term
records of grass growth for their farm. Therefore, we take the monthly average grass growth of
a nearby farm (chosen by the farmer from Dairy NZ [48]) and interpolate these values to obtain
a weekly estimate for the average grass growth rate. Then, the average values are scaled so that
the cumulative total matches the average pasture consumption in Table 7.1. This results in a
deterministic sequence of grass growth rates g1, g2, . . . , g52.

7.3.2 Solution method

MOO was solved using the DynamicProgramming.jl package (see Appendix A) in the
Julia language [28]. As part of the solution process, it is necessary to discretise the state and
control variables. A coarse discretisation reduces the computational effort required to solve the
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problem, but it introduces interpolation error and so may result in a poorer solution. We chose
the discretisation listed in Table 7.2 through experimentation as a trade-off between speed and
accuracy. In each stage, there are 55,022 discrete points in the state-space and 286 possible
controls. Since we need to evaluate the cost of each control at every discrete point in the state-
space for each stage t = 1, 2, . . . , 51, this results in ≈ 8 × 108 evaluations of the transition
and cost functions. (Note that we do not need to evaluate the cost-to-go of the 52nd stage since
V53(·) = 0.) The discretised model was solved using eight cores of an Intel i7-4770 CPU with
16GB of memory. The total solution time is approximately 25 minutes.

Variable Discretisation
xb 2.500, 2.525, 2.550, . . . , 4.000
xe 40, 45, 50, . . . , 90
xl 0, 1
xg 1500, 1550, 1600, . . . , 3500
us 0, 0.5, 1, . . . , 6
ug 0, 5, 10, . . . , 50
ul 0, 1

Table 7.2: Discretisation of the state and control variables for the case study.

7.3.3 Results

The solution of the model is a policy based on an estimate for the cost-to-go function Vt(xt)
at each of the discretised points in the state-space. We can interpolate between the discretised
points to create a four-dimensional surface. The dimensionality makes the cost-to-go surface
difficult to visualise, but one can fix the values of some state dimensions to make this easier. In
Figure 7.4, we set the energy required for maintenance xe = 70 and the lactation status xl = 1,
and then plot the cost-to-go surface Vt(xt) with respect to the Body Condition Score xbt and the
pasture cover xgt for weeks t = 1 (Figure 7.4a), t = 25 (Figure 7.4b), and t = 50 (Figure 7.4c).
In all weeks, the cost-to-go decreases as the Body Condition Score xbt increases. However, for
a fixed pasture cover xgt , the marginal value of each extra unit of body condition decreases. In
addition, in all weeks the cost-to-go decreases as the pasture cover increases. In Figure 7.4c,
the cost-to-go reflects the two end-of-horizon penalties in the model incurred when the pasture
cover xp53 is below 2500 kg/ha and when the Body Condition Score xb53 is less than 3.2.

Given the initial state x1 = (3.2, 70.0, 1, 2500), we use the cost-to-go function to simulate
the policy. The result of the simulation is a sequence of optimal controls u1, u2, . . . , u52 and a
corresponding sequence of optimal states x1, x2, . . . , x53. These are plotted in Figure 7.5. (We
have not plotted the lactation state xlt or the dry-off decision ult since they can be inferred from
the other outputs.)

The results are broadly similar to those observed in Figure 7.2, although now the policy
is optimised. During the first 100 days, the cow loses body condition (Figure 7.5a). Then,



124 Chapter 7. The Milk Output Optimiser

2.5 3.0 3.5 4.0 4.5
2000

2250

2500

2750

3000
(a) Week 1

-7400
-7300
-7200
-7100
-7000
-6900
-6800
-6700
-6600

2.5 3.0 3.5 4.0 4.5
2000

2250

2500

2750

3000
(b) Week 25

-2750

-2500

-2250

-2000

-1750

2.5 3.0 3.5 4.0 4.5
2000

2250

2500

2750

3000
(c) Week 50

0
250
500
750
1000
1250
1500
1750

Figure 7.4: Contour plots showing the cost-to-go surface Vt(xt) ($/ha) for three weeks: (a)
t = 1, (b) t = 25, and (c) t = 50. We vary the Body Condition Score xbt and pasture cover xgt ,
assuming the energy required for maintenance is fixed at xet = 70 MJ/cow/day and the cow is
current lactating (i.e. xl = 1). Numbers that are more negative are better.
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Figure 7.5: Simulation of MOO using the optimal policy: (a) the Body Condition Score xbt ; (b)
the energy required for maintenance xet ; (c) the quantity of milk solids produced; (d) the pasture
cover xgt ; (e) the quantity of grass consumed; and (f) the quantity of palm kernel consumed.

between days 100 and 280, the body condition increases. At day 280 the cow is dried-off
(Figure 7.5c). This results in a reduction in the energy required for maintenance (Figure 7.5b),
as well as the cessation of milk production (Figure 7.5c). As a consequence, feed intake drops
(Figure 7.5e). The pasture cover (Figure 7.5d) follows a clear seasonal trend. During the first
50 days, the grass grows at a slower rate than it is eaten (Figure 7.5e). As a result, the pasture
cover declines. Then, as the grass growth rate increases in spring, the pasture cover increases.
During the late summer and early autumn (days 225–275), the pasture cover begins to decrease.
Once the cows are dried-off at day 280, the reduction in feed intake allows the pasture cover to
increase. However, in the last 20 days of the season the extra energy requirements caused by
pregnancy, and the need to regain body condition in order to meet the end-of-season target (i.e.
xb53 ≥ 3.2), lead to an increase in grass intake and the corresponding reduction in pasture cover.
Over the season palm kernel is fed at approximately 4 kg/cow/day (Figure 7.5f). In addition,
milk production, while milking, remains essentially constant at 1.8 kg/cow/day (Figure 7.5c).

In Table 7.3, we present a summary of the simulation and compare it with the DairyBase data
from the farm (Table 7.1). Compared with the DairyBase data from the farm, MOO consumes
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less grass (12.07 t/ha compared with 12.15 t/ha) but feeds more palm kernel (4.46 t/ha compared
with 2.85 t/ha). This increases the quantity of milk produced from 398 kg/cow on the farm to
518 kg/cow in MOO. Therefore, the operating profit increases from $2197/ha to $3560/ha. This
suggests that the farm can increase its profitability by feeding more palm kernel.

MOO Historical
Lactation Length (weeks) 39 38

Milk Production (kg)
per Hectare 1555 1193

per Cow 518 398
Milk Revenue ($/ha) 9328 7158

Feed Consumed (t/ha)
Pasture 12.07 12.15

Palm Kernel 4.46 2.85
% Feed Imported 27.0 19.0

Palm Kernel Expense ($/ha) 2231 1425
Fixed Costs ($/ha) 3536 3536

Operating Profit ($/ha) 3560 2197

Table 7.3: Summary data of the simulation using the optimal policy.

7.4 Two-stage model

In the previous section we solved an instance of MOO given a fixed stocking rate and the
ability to purchase unlimited palm kernel. However, instead of using the spot market, some
farmers purchase a fixed quantity of palm kernel on contract at the start of the season. Moreover,
recall from our intuitive exploration of the problem (Section 7.1) that the two key strategic level
decision variables are the stocking rate and total quantity of feed. In effect, farmers face a two-
stage stochastic optimisation problem. In the first stage, farmers choose a stocking rate ρ and a
quantity of palm kernel to purchase Q. Then, in the second stage, they operate according to the
optimal policy like the one described in the previous section, but with a cap on the total quantity
of palm kernel that they can feed over the season. In addition, the milk price pm in the second
stage is uncertain. In this section, we form a distribution for the milk price pm from the last
eight Fonterra end-of-season milk prices [77], which we list in Table 7.4. Each of the historical
milk prices is assumed to occur with equal probability (i.e. 1/8).

2009/10 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 2016/17
pm 6.10 7.60 6.08 5.84 8.40 4.40 3.90 6.12

Table 7.4: Historical Fonterra end-of-season milk prices ($/kg).

As a result of choosing the stocking rate ρ and the quantity of palm kernel to purchase Q,
and then operating according to an optimal policy, the farmer earns an operating profit ($/ha),
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which we denote Π(pm, ρ, Q). As we discussed in Chapter 1, there are two types of stochas-
tic optimisation subproblems that we could use to model this problem: Hazard-Decision and
Decision-Hazard.

In a Hazard-Decision model, the farmer first observes the price (i.e. the hazard), and then
chooses the stocking rate and quantity of palm kernel to purchase (i.e. the decision) that max-
imises total profit. This is also called a “Wait-and-See” model [31]. The Hazard-Decision
objective is the expectation of taking the best action in each outcome of price:

Hazard-Decision = Epm
[
max
ρ,Q
{Π(pm, ρ, Q)}

]
. (7.3)

In a Decision-Hazard model, the farmer is forced to choose a single stocking rate and quan-
tity of palm kernel to purchase before they observe the price. This is also called a “Here-and-
Now” model [31]. The Decision-Hazard objective is:

Decision-Hazard = max
ρ,Q
{Epm [Π(pm, ρ, Q)]} . (7.4)

In a Decision-Hazard model, the farmer faces the risk of a poor outcome as a result of their
decision. The optimal solution maximising expected profit may be to purchase a large quantity
of palm kernel to support a high stocking rate. However, in years with a low milk price, the
farmer may lose money as the cost of the palm kernel outweighs the value of the additional milk
produced.

In the next section, we discuss how we solve these two-stage stochastic optimisation prob-
lems.

7.4.1 Solution method

In order to solve these two-stage stochastic programming problems (Eq. 7.3 and Eq. 7.4), we
follow a four-step process. First, we extend and then solve a formulation of MOO with two new
state variables: one for the quantity of palm kernel in storage, and one for the current stocking
rate. Next, we simulate the optimal policy of the extended formulation for discretised combina-
tions of stocking rate ρ and quantity of palm kernel Q. This results in a function Γ(ρ,Q), that
represents the maximum quantity of milk that can be produced given the stocking rate ρ and
quantity of palm kernel Q. Third, we calculate the operating profit function Π(pm, ρ, Q) using
the milk production function Γ(ρ,Q) that we compute in the second step. Finally, we solve both
the Hazard-Decision and Decision-Hazard models (i.e. Eq. 7.3 and 7.4) by enumeration. We
now describe each of the four steps in more detail.

Step One: extended formulation

We extend the formulation of MOO by adding two new state variables. They are:
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(5) xqt , the quantity of palm kernel in storage at the start of week t; and
(6) xρt , the stocking rate at the start of week t.

The quantity of palm kernel in storage at the start of week t has the corresponding dynamic:

xqt+1 = xqt − 7× xρt × ust ,

where ust is the quantity of palm kernel fed per cow per day.

The dynamic of the stocking rate is worth explaining before we introduce it. For this two-
stage model, we are only concerned with different stocking rates that are fixed during each
season. One way to solve this problem would be to solve a separate instance of MOO (con-
taining xqt ) for discretised set of stocking rates in parallel. However, our solution library,
DynamicProgramming.jl, already includes an efficient parallelisation scheme. There-
fore, we introduce xρ1 as an additional state variable and we set up the dynamics so that it does
not change over the season:

xρt+1 = xρt .

The first stage decisions xρ1 and xq1 correspond to the initial decisions ρ and Q described
above. Furthermore, since we assume that the farmer purchases a fixed quantity xq1 of palm
kernel at the start of the year, we remove the cost of purchasing palm kernel from the stage-
objective.

Like the case study in the previous section, the extended MOO model was solved using
the DynamicProgramming.jl package (see Appendix A) in the Julia language [28]. In
initial experiments, we used the same discretisation as that listed in Table 7.2 (in addition to
discretising the two new state variables). This discretisation resulted in 14,030,610 discrete
points in the state-space in each stage (compared with 55,022 previously). Thus, the solution
time would have been on the order of days instead of 30 minutes. This is an example of the
well-known “curse-of-dimensionality” for dynamic programming. In order to solve the model
in a reasonable amount of time, we chose the coarser discretisation listed in Table 7.5. In each
stage, there are 3,652,110 discrete points in the state-space and 154 possible controls. Since we
need to evaluate the cost of each control at every discrete point in the state-space for each stage
t = 1, 2, . . . , 51, this results in ≈ 2.9 × 1010 evaluations of the transition and cost functions.
(Note that we do not need to evaluate the cost-to-go of the 52nd stage since V53(·) = 0.) The
discretised model was solved using a virtual machine with 20 Intel E5-2698 CPUs with 64GB
of memory. The total solution time was approximately 8 hours.

Step Two: construct milk surface

Once the model is solved, we simulate the optimal policy given the initial conditions xb1 =

3.2, xe1 = 70, xl1 = 1, and xg1 = 2500, for all xρ1 ∈ {2.5, 2.05, 2.1, . . . , 4.5} and xq1 ∈
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Variable Discretisation
xb 2.50, 2.55, 2.60, . . . , 4.00
xe 40, 45, 50, . . . , 90
xl 0, 1
xg 1500, 1600, 1700, . . . , 3500
xρ 2.5, 3.0, 3.5, 4.0, 4.5
xq 0, 200, 400, . . . , 10000
us 0, 1, . . . , 6
ug 0, 5, 10, . . . , 50
ul 0, 1

Table 7.5: Discretisation of the state and control variables for the two-stage model.

{0, 100, 200, . . . , 10000}. For each simulation of the optimal policy, we calculate the maxi-
mum quantity of milk solids that can be produced given the stocking rate xρ1 and quantity of
palm kernel xq1:

Γ(xρ1, x
q
1) = xρ1

52∑
t=1

Mt(x̂t, ût), (7.5)

where x̂t and ût are the optimal controls as a result of simulating the optimal policy with the
stocking rate xρ1 and quantity of palm kernel xq1. This surface is plotted in Figure 7.6. The
surface is similar to our intuitive example (Figure 7.1).
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Figure 7.6: Contour plot showing the total quantity of milk produced (kg/ha/year) as the total
quantity of palm kernel xq1 (kg/ha) and the stocking rate xρ1 (cows/ha) are varied.

If we choose a fixed stocking rate of xρ1 = 2 cows/ha and increase the quantity of palm
kernel xq1 from 0, each additional kilogram of palm kernel can be converted by the cows into
milk. Therefore, milk production increases. However, once we exceed ≈ 3000 kg of palm
kernel, each cow is producing the maximum biological quantity of milk, so each additional
kilogram of palm kernel does not increase the quantity of milk produced.

If we choose to feed zero palm kernel (i.e. xq1 = 0), and then increase the stocking rate xρ1
from 2 cows/ha, milk production initially increases. This is because there is sufficient grass
growth over the season to support the additional cows that produce the additional milk. How-
ever, once the stocking rate exceeds xρ1 = 2.4 cows/ha, the herd fully consumes the grass grown
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over the season, and each additional cow requires feed for maintenance, which decreases the
quantity of feed available for milk production and therefore total milk production.

If we choose a quantity of xq1 = 4000 kg of palm kernel and then increase the stocking
rate xρ1 from 2 cows/ha, the quantity of milk produced increases linearly at a steep rate. This is
because every cow is producing the biological maximum quantity of milk. Once we increase
the stocking rate above xρ1 = 2.6 cows/ha, the quantity of milk produced continues to increase,
but at a slower rate. In this region, all of the feed is consumed (i.e. xg53 = 2500 kg/ha), but the
marginal contribution to the total milk production by each additional cow is positive. However,
once we increase the stocking rate above xρ1 = 2.9 cows/ha, the marginal contribution to the
total milk production by each additional cow is negative, and the total quantity of milk produced
decreases.

Finally, in the top right-hand corner of the plot (i.e. when xq1 and xρ1 are large), each cow is
fed palm kernel at a maximum quantity of 6 kg/day (because of our discretisation of ust ). If we
increased this maximum limit, the plateau would be lifted higher.

Step Three: construct operating profit surface

The next step is to calculate the maximum operating profit that can be earned given the stocking
rate xρ1 and quantity of palm kernel xq1.

There are three components to operating profit: milk revenue, palm kernel cost, and the
stocking rate cost. We have already discussed the first two components: milk revenue is the
quantity of milk produced multiplied by the milk price, and palm kernel cost is the total quantity
of palm kernel purchased (xq1) multiplied by the palm kernel cost (cs). However, the stocking
rate cost is more complicated. As the stocking rate increases, farm operating expenses increase.
Macdonald et al. [135] give a breakdown of different farm expenses per hectare by stocking
rate. We fitted a linear regression line through the data to obtain an estimate for the fixed cost
(the intercept) per hectare ($1467/ha) and the variable cost (the slope) of the number of cows
per hectare ($589/cow/ha). Therefore, the operating profit Π(pm, xρ1, x

q
1) given the milk price

pm, stocking rate xρ1, and quantity of palm kernel xq1 is:

Π(pm, xρ1, x
q
1) = pm × Γ(xρ1, x

q
1)︸ ︷︷ ︸

milk revenue

− (589× xρ1 + 1467)︸ ︷︷ ︸
cost of stocking rate

− cs × xq1︸ ︷︷ ︸
cost of palm kernel

, (7.6)

where cs is the cost of palm kernel ($0.5/kg as before).

Step Four: solve via enumeration

Finally, we solve, via enumeration, Eq. 7.3 and Eq. 7.4 using the eight prices listed in Table
7.4 and the discretisations for xρ1 and xq1 used in Step Two. For example, the Hazard-Decision
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problem is:

Hazard-Decision = Epm
[

max
xρ1∈P, x

q
1∈Q
{Π(pm, xρ1, x

q
1)}
]
, (7.7)

where P = {2.5, 2.05, 2.1, . . . , 4.5} and Q = {0, 100, 200, . . . , 10000} from Step Two.

7.4.2 Results

In Table 7.6, we give the solution of the two-stage models under the Hazard-Decision (HD)
and Decision-Hazard (DH) assumptions. For each of the eight seasons (2009/10 to 2016/17
inclusive) we give the Fonterra end-of-season milk price pm, the optimal stocking rate xρ1, the
optimal quantity of palm kernel xq1, and the operating profit Π.

Season 09/10 10/11 11/12 12/13 13/14 14/15 15/16 16/17
pm ($/kg) 6.10 7.60 6.08 5.84 8.40 4.40 3.90 6.12
xρ1 (cows/ha) 3.25 3.3 3.25 3.2 3.45 2.75 2.4 3.25

HD xq1 (t/ha) 6.2 6.4 6.2 6.0 7.0 3.0 0.0 6.2
Π ($/ha) 4846 7650 4809 4368 9183 1935 1273 4883
xρ1 (cows/ha) 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

DH xq1 (t/ha) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
Π ($/ha) 4845 7599 4809 4368 9067 1725 807 4882

Table 7.6: Solution of the two-stage models under the Hazard-Decision (HD) and Decision-
Hazard (DH) assumptions.

By definition, the Decision-Hazard model makes a single decision for the stocking rate xρ1
and the quantity of palm kernel to purchase xq1 before learning the milk price pm. Therefore,
the stocking rate (xρ1 = 3.2 cows/ha) and initial quantity of palm kernel to purchase (xq1 = 6

t/ha) are constant across all eight seasons. In contrast, the Hazard-Decision model can choose a
different stocking rate and quantity of palm kernel in each season. When the milk price is high
(e.g. $8.40/kg in 2013/14), the optimal decision is to have a stocking rate of 3.45 cows/ha and
to purchase 7 t/ha of palm kernel. When the milk price is low (e.g. $3.90/kg in 2015/16), the
optimal decision is to have a stocking rate of 2.4 cows/ha and to purchase 0 t/ha of palm kernel.

In three of the seasons (2009/10, 2011/12, and 2016/17), the Hazard-Decision solution
(xρ1 = 3.25 cows/ha, xq1 = 6.2 t/ha) is very similar to the Decision-Hazard solution (xρ1 = 3.2

cows/ha, xq1 = 6 t/ha). However, despite the higher intensity, the operating profits differ by
at most $1/ha (e.g. $4846/ha compared with $4845/ha in 2009/10). This suggests that the two
policies are nearly identical. In the 2012/13 season, the Hazard-Decision solution is identical
to the Decision-Hazard solution. We call the policy of xρ1 = 3.25 cows/ha and xq1 = 6.2 t/ha
the medium intensity policy. We provide a plot of the simulated medium intensity policy in
Appendix D.

In two of the remaining seasons (2010/11 and 2013/14), the optimal Hazard-Decision so-
lution is more intensive than the Decision-Hazard solution. In 2010/11, the optimal solution is
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xρ1 = 3.3 cows/ha and xq1 = 6.4 t/ha. Compared with the Decision-Hazard solution, the operat-
ing profit increases by $51/ha from $7599/ha to $7650/ha. In 2013/14, the optimal solution is
even more intensive: xρ1 = 3.45 cows/ha and xq1 = 7 t/ha. Compared with the Decision-Hazard
solution, the operating profit increases by $116/ha from $9067/ha to $9183/ha. We call the
policy of xρ1 = 3.45 cows/ha and xq1 = 7 t/ha the high intensity policy. We provide a plot of the
simulated high intensity policy in Appendix D.

In the remaining two seasons (2014/15 and 2015/16), the Hazard-Decision solution is less
intensive than the Decision-Hazard solution. In these two seasons, the milk price is lower than
average ($4.40/kg in 2014/15 and $3.90/kg in 2015/16). Therefore, compared with the stocking
rate of the Decision-Hazard solution (3.2 cows/ha), the Hazard-Decision model chooses a low
stocking rate of 2.75 cows/ha in 2014/15 and 2.4 cows/ha in 2015/16. The Hazard-Decision
model also purchases less palm kernel than the Decision-Hazard model (3 t/ha in 2014/15 and
0 t/ha in 2015/16, compared with 6.0 t/ha). We refer to the solution for the 2015/16 season as
the low intensity policy. We provide a plot of the simulated low intensity policy in Appendix D.

In Table 7.7, we summarise the three policies of varying intensity and show the average of
the historical DairyBase data from the farm (i.e. from Table 7.1). As the policy intensifies, the
stocking rate, the quantity of palm kernel consumed, and the quantity of milk production per
hectare all increase. However, the quantity of grass from pasture consumed per cow decreases.
As a result, the policy that maximises the total energy intake (grass + palm kernel) per cow, and
therefore per cow milk production, is the medium intensity policy. This highlights the trade-off
between the stocking rate and the quantity of feed available per cow that we explored in Section
7.1.

Policy Intensity
Low Medium High Historical

Stocking Rate 2.4 3.2 3.45 3
Lactation Length (weeks) 39 39 39 38

Milk Production (kg)
per Hectare 1061 1865 1918 1193

per Cow 442 574 556 398
Pasture Consumed (t)

per Hectare 11.94 12.09 12.05 12.15
per Cow 4.98 3.78 3.49 4.05

Palm Kernel Consumed (t)
per Hectare 0.0 6.00 7.00 2.85

per Cow 0.0 1.88 2.03 0.95
% Feed Imported 0.0 33.2 36.7 19.0

Table 7.7: Summary of the low, medium, and high intensity policies.
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The value of price uncertainty

In Table 7.8 we give the expected and worst-case operating profit for each model, as well as the
standard deviation of the operating profit. Because the Hazard-Decision model can choose a
different (xρ1, x

q
1) for each price scenario, it has the largest expected profit ($4868/ha compared

with $4762/ha). In addition, it also performs better in the worst-case ($1273/ha compared with
$807/ha).

Type Expectation Std. Deviation Worst-Case
Hazard-Decision 4868 2622 1273
Decision-Hazard 4762 2716 807

Table 7.8: Operating Profit ($/ha) under the Hazard-Decision and Decision-Hazard assump-
tions.

The expected value of perfect information (EVPI) is the maximum cost the decision maker
should be willing to pay to learn about the random outcome before it is realised [31]. For
the farmer, the EVPI is the amount they should be willing to pay at the start of the season to
learn the end-of-season milk price. The EVPI can be calculated as the difference between the
expected operating profit of Hazard-Decision (HD) solution and the expected operating profit
of Decision-Hazard (DH) solution. Therefore, the EVPI is:

EVPI = HD− DH = $4868/ha− $4763/ha = $105/ha.

This suggests that a farmer should be willing to pay $105/ha in order to find out the milk
price at the start of the season. In other words, on average, knowing the milk price at the start
of the season allows the farmer to increase their expected profit by 2.2%. However, the increase
in profit between the Hazard-Decision and Decision-Hazard solutions is not distributed evenly
with respect to the end-of-season milk price. In Figure 7.7 we plot the difference between the
operating profit of the Hazard-Decision and Decision-Hazard policies against the end-of-season
milk price. The benefit of using the Hazard-Decision policy over the Decision-Hazard policy
is largest (+$466/ha) when the end-of-season milk price is low (e.g. $3.90/kg). Therefore,
risk-averse farmers, who are more concerned about their downside risks, will value perfect
information more than a risk-neutral farmer. In the next section we build upon this finding and
analyse the decision-making of risk-averse farmers.

7.4.3 Risk

In the previous analyses, we assume that the farmer maximises their profit in expectation. How-
ever, this can lead to policies that perform badly in the extreme cases. For example, in the
Decision-Hazard solution, the optimal decision was to purchase a large quantity of palm kernel
(xq1 =6 t/ha) and run a high stocking rate (xρ1 =3.2 cows/ha), regardless of the milk price. This
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Figure 7.7: Difference in operating profit between the Hazard-Decision and Decision-Hazard
policies against the end-of-season milk price. Positive differences are in favour of the Hazard-
Decision policy.

policy performs well in expectation, but in years with a low milk price (e.g. $3.90/kg in the
2015/16 season) it can perform poorly. In these scenarios, farmers are forced to either borrow
more money from the bank or reduce spending on items such as animal health. Consequently,
some farmers may be averse to such downside outcomes.

To illustrate the effects of risk aversion, we present an example using the exponential utility
function [83]:

Uα(x) = 1− e−αx/1000, (7.8)

which maps the operating profit x to the risk-adjusted operating profit Uα(x). As the risk aver-
sion level α increases, the utility function becomes more risk-averse.

We construct the risk-adjusted Decision-Hazard problem by mapping the profit achieved by
the farmer through the exponential utility function:

risk-adjusted Decision-Hazard = max
xρ1,x

q
1

{Epm [Uα (Π(pm, xρ1, x
q
1))]} . (7.9)

The risk-adjusted Decision-Hazard problem was solved three times for three different levels
of the risk aversion parameter α: 0.1, 1, and 10. In Figure 7.8 we plot the optimal (xρ1, x

q
1) pairs

for each of these problems. On the x-axis, we plot the total quantity of palm kernel to purchase
xq1. On the y-axis, we plot the stocking rate xρ1. Also plotted are contours of the expected profit
(Figure 7.8a) and standard deviation in profit (Figure 7.8b).

For low levels of risk aversion (α ≤ 0.1), the optimal solution is to purchase 6 t/ha of palm
kernel and run a stocking rate of 3.2 cows/ha. This is the same solution as the risk-neutral
Decision-Hazard solution. As the risk aversion parameter α is increased, the optimal decision
is to purchase less palm kernel and decrease the stocking rate. This decreases the expected
operating profit, but it also decreases the standard deviation in operating profit. This reinforces
the findings from Dairy NZ [50] that showed that lower intensity farms had lower average
profits, but that they also a lower variance in operating profit between seasons.
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For high levels of risk aversion (α ≥ 10), the optimal solution is to purchase 0 t/ha of palm
kernel and run a stocking rate of 2.4 cows/ha. This is because the uncertainty was derived
from the eight historical observations of the Fonterra end-of-season milk price (which were
all assumed to be equally likely). This policy is optimal for the worst-case scenario in that
set of eight observations ($3.90/kg in the 2015/16 season). Therefore, increasing the level of
risk-aversion above α = 10 does not change the policy.
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Figure 7.8: Contour plots showing (a) the expected operating profit, and (b) the standard devi-
ation in operating profit, as the stocking rate xρ1 and quantity of supplement xq1 are varied. Also
plotted are the optimal solutions for varying levels of α in the exponential utility function, as
well as the historical set-up of the farm.

In Table 7.9 we give, for each of the risk-adjusted Decision-Hazard problems, the expected
operating profit from each model, the standard deviation of the operating profit, and the op-
erating profit obtained in the worst-case. When the risk aversion parameter α = 0.1, the so-
lution is identical to the risk-neutral Decision-Hazard solution. As the level of risk aversion
increases, the expected profit decreases, the standard deviation decreases, and the profit ob-
tained in the worst-case increases. In expectation, the most risk-averse solution (α = 10) is
3568 − 4762 = −$1194/ha worse off compared with the least risk-averse solution (α = 0.1).
However, in the worst-case (i.e. when the milk price was $3.90/kg), the most risk-averse solution
(α = 10) is better off than the least risk-averse solution by 1273 − 807 = $466/ha. Therefore,
when choosing the stocking rate and quantity of palm kernel to purchase, the farmer needs to
trade-off doing well in expectation against doing well in the bad outcomes. This trade-off will
depend on their aversion for risk, as measured by α.

Parameter Risk-Aversion Expectation Std. Deviation Worst-Case
α = 0.1 Low 4762 2716 807
α = 1 Medium 4369 2176 1199
α = 10 High 3568 1576 1273

Table 7.9: Operating profit ($/ha) when optimised using different utility functions.
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7.5 Discussion

In this chapter we applied MOO to the farm described in Section 7.3. From the results we obtain,
it is apparent that the current farm setup is sub-optimal. If the current stocking rate (3 cows/ha)
is maintained, the expected operating profit could be increased by increasing the supplementa-
tion intensity from 2.85 t/ha to 5 t/ha. Alternatively, if the same level of supplementation was
maintained (i.e. 2.85 t/ha), the expected operating profit could be increased by decreasing the
stocking rate from 3 cows/ha to 2.75 cows/ha. Before we performed this analysis, the farmer
decided to reduce their stocking rate to 2.7 cows/ha in preparation for the 2015/16 season. This
decision is close to that recommended by MOO. However, we do not have the data (e.g. Table
7.1) needed to analyse the impact of this decision.

This type of analysis, aimed at improving the profitability of a single dairy farm, has been
performed elsewhere in the literature (e.g. in the Waikato region of New Zealand by Doole [62],
and on three farms in Australia in response to the threat of climate change by Harrison et al.
[101]). However, like our analysis in Section 7.3, but unlike our analysis in Section 7.4, these
authors used a fixed milk price. This is a large limitation since we showed through the Hazard-
Decision model that the optimal intensification decision is dependent upon the milk price. This
observation is not novel and has been observed multiple times in the literature (e.g. in New
Zealand [19, 60], Spain[4], and the United Kingdom [206]). Moreover, optimising intensifica-
tion decisions given a fixed milk price (e.g. the expected milk price) ignores the volatility in
operating profit associated with an uncertain milk price.

Our analysis of the last 18 years of data from Dairy NZ [50] showed that the yearly operating
profit of the average owner-operator (i.e. a farmer who owns the land) had a coefficient of
variation4 of 60%. In comparison, the coefficient of variation of the operating profit for the
farm over the last eight years using the Decision-Hazard solution (i.e. Table 7.6) was 57%.
However, the coefficient of variation of the last eight years of milk prices (Table 7.4) was only
24%. The additional volatility comes from the decision to purchase a fixed quantity of palm
kernel on the first day of the year. When milk prices are high, the additional feed increases
the operating profit by increasing the total quantity of milk that can be produced. However,
when milk prices are low, the cost of the palm kernel is greater than the benefit of the extra
milk, reducing the operating profit. This observation, that purchasing palm kernel increases
volatility in operating profit, explains why risk-averse farmers decrease the intensity of their
farming operations. It has also been observed by Brazendale [34], who noted that despite their
use for combating adverse weather events, supplements can expose a farm business to greater
financial risk if not used appropriately.

Finally, despite the large variation in operating profit, the expected value of perfect infor-
mation (EVPI) for the farm is only $105/ha. This represents a gain in expected operating profit
of 2.2% if the farmer knew the end-of-season milk price at the start of the season. However,

4The standard deviation divided by the mean.
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this value might be greater if more recourse decisions were available for the farmer, such as the
ability to change their stocking rate during the season, or the ability to purchase palm kernel via
the spot market instead of making a single bulk purchase at the start of the season.

7.6 Summary

In this chapter we have shown how the E-Cow system of nonlinear equations can be embed-
ded within a dynamic program and solved to find optimal feeding strategies. We applied the
resulting dynamic program, which we call MOO, to a farm in the Bay of Plenty region of New
Zealand. Our analysis suggests that the operation of this farm is currently sub-optimal, and
that profitability could be improved, either by increasing the supplementation intensity or by
reducing the stocking rate. It is interesting to note that independently of this work, the farmer
elected to reduce their stocking rate from 3 cows/ha to 2.7 cows/ha (instead of the 2.75 cows/ha
recommended by MOO) in preparation for the 2015/16 season.

Moreover, the chapter reinforces the finding that high-intensity farms are only the most
profitable when milk prices are high. Notably, this chapter differs from the existing literature
by modelling the intensification decision as a risk-averse two-stage stochastic program. We
demonstrate the intuitive solution that, as the farmer becomes more risk-averse, they decrease
the intensity of their farming operation.

Although we have demonstrated that MOO is a useful tool for practical farm management,
the biggest limitation of the model is solution time. The model developed in Section 7.4 took
eight hours to solve on a virtual machine with 20 CPUs. Thus, due to the “curse of dimension-
ality,” we are limited in our ability to add new features to MOO. For example, if we were to
add stochastic grass growth with 10 possible realisations per stage, the solution time would be
on the order of 3.5 days. Therefore, in the next two chapters we formulate a novel multistage
stochastic optimisation model of a New Zealand dairy farm that uses a simplified piecewise lin-
ear approximation of a dairy cow instead of the detailed nonlinear E-Cow model. This allows
us to solve the problem using the stochastic dual dynamic programming algorithm, which we
discuss in the first half of this thesis.

Supplementary materials The Julia code to implement MOO, as well as the data needed to
run the case study and replicate the results in this chapter, is available at https://github.
com/odow/MOO.

https://github.com/odow/MOO
https://github.com/odow/MOO


Chapter 8

A multistage stochastic optimisation model
of a pastoral dairy farm

In this chapter we present POWDER: the Milk Production Optimiser incorporating Weather Dy-
namics and Economic Risk. POWDER is a novel multistage stochastic programming model of
a pastoral dairy farm that incorporates environmental and economic uncertainty. Such a model
represents a significant step forward in the ability to gain insight into the interrelationships that
weather and price uncertainty have on the decision-making of dairy farmers. Readers should
note that despite the reference to economic risk in the name of our model, we defer our analysis
of risk to the next chapter.

This chapter is laid out as follows. In Section 8.1 we formulate POWDER as a multistage
stochastic optimisation problem. Then, in Section 8.2 we apply POWDER to the farm from
Chapter 7. Finally, we finish the chapter with a discussion in Section 8.3 and some summarising
remarks in Section 8.4.

8.1 Formulation

In this section we formulate POWDER as a multistage stochastic optimisation problem over 52
weeks, t = 1, 2, . . . , 52. We call the sequence of 52 weeks a season. POWDER is a combination
of four separate models: a weather model, a grass growth model, an animal model, and a milk
price model. Before we detail the specifics of POWDER, we provide an overview in Figure
8.1 using the diagramming conventions of System Dynamics [194]. States are in square boxes.
The three random inputs are shown as arcs across the model boundary and are named in bold
italicised text. Controls that can be chosen by the farmer are named in bold underlined text, and
control variables that cannot be chosen by the farmer are named in a standard font. The weather
model is coloured blue, the grass growth model is coloured green, the animal model is coloured
brown, and the price model is coloured orange.

We now describe the model in detail, beginning with the weather and grass growth models.

137
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Figure 8.1: System Dynamics diagram of the POWDER model.

The equations we present form the transition function and set of feasible controls that we defined
in Chapter 1. A complete formulation is given as an appendix item in Appendix E.

8.1.1 Grass growth and weather models

The basis for any whole-farm model in a pastoral farming context is a model for grass growth.
For New Zealand conditions, there is a large literature on different modelling approaches [37,
73, 115, 139, 176]. However, many of these models are highly detailed and nonlinear (and non-
convex). Thus, the technical requirements of SDDP prevent us from using these models. In this
section, we introduce two previously published models of grass growth. The first relates grass
growth to the total quantity of grass on the farm (since if there is no grass, none can grow), but
excludes any weather effects such as drought. The second relates grass growth to the weather
(via evapotranspiration1) but excludes the total quantity of grass on the farm. Therefore, we
propose a new model that assumes that the two models act independently to limit grass growth.

The first model assumes that grass growth is related to the current pasture cover and has
been used before in a New Zealand setting [19, 81]. The model is a logistic growth function so
that:

Pt+1 − Pt = 7× 4∆Pmax

Pmax

× Pt
(

1− Pt
Pmax

)
, (8.1)

where Pt is the pasture cover (kg/ha) at the start of week t, the constant Pmax is the maximum
1Evapotranspiration is the sum of both direct evaporation (from soil to atmosphere) and plant transpiration

(where the water moves from the soil through the plant and evaporates from the parts exposed to the atmosphere
such as the leaves).
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possible pasture cover (the point at which the senescence2 rate approaches the growth rate [19]),
and the constant ∆Pmax is the maximum possible rate of pasture growth (kg/day). The multi-
plication by 7 converts from a daily growth rate to a weekly growth rate. The daily growth rate
attains the maximum of ∆Pmax when Pt = Pmax/2.

In contrast to the logistic growth function, Moir et al. [139] propose that grass growth is
proportional to the evapotranspiration rate such that:

Pt+1 − Pt = κt × et, (8.2)

where Pt is the pasture cover (kg/ha) at the start of week t, et is the evapotranspiration rate
(mm/week) during week t, and κt is a constant (kg/ha/mm) that can be interpreted as an index
of soil fertility. One weakness of this model is that it ignores the impact that the current pas-
ture cover has on the growth rate. Evapotranspiration depends on a number of factors. First,
there must be sufficient water in the soil for evapotranspiration to occur. Second, more wa-
ter will evaporate and transpire on a hot, sunny day than a cold, cloudy day. Therefore, the
evapotranspiration rate, et, during week t is:

et = min {ept , Wt + rt} , (8.3)

where ept is the potential evapotranspiration rate [168] during week t (mm/week) as determined
by the weather during week t, Wt is the plant-available water stored in the root zone of the soil
at the start of week t (mm), and rt is the incident rainfall during week t (mm/week). Both the
evapotranspiration rate ept and the incident rainfall rt are random variables in week t.

Farmers sub-divide their farms into a number of individual fenced units called paddocks.
The herd is rotated around the paddocks at a rate of one to two paddocks per day, depending on
growth rate of the grass. This leaves each paddock with a different pasture cover. In this chapter,
we make the simplifying assumption that all paddocks are identical. Therefore, Pt represents
the average pasture cover across the entire farm at the start of week t.

One extra feature of pasture is that it can be harvested to form hay or silage.3 This can be
stored until later in the season when the pasture cover is low. We denote the quantity of feed
that is in storage at the start of week as Qt (kg). Therefore:

Qt+1 = Qt + βht − f qt , (8.4)

where ht is the quantity of pasture harvested in week t (kg), and f qt is the quantity (kg) of the
stored pasture fed to the herd in week t (discussed in Section 8.1.2). β is a constant conversion
factor between pasture and feed in storage and accounts for spoilage and wastage.

To incorporate the two models of pasture growth (Eq. 8.1 and Eq. 8.2), we assume that both

2The gradual deterioration of a cell due to ageing.
3A fermented, high-moisture alternative to hay.
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of these models act independently to limit grass growth. Our final dynamical model for grass
growth is:

Pt+1 = Pt + min

{
κ× et, 4

∆Pmax

Pmax

× Pt
(

1− Pt
Pmax

)}
− ht − fpt , (8.5)

where fpt is the quantity of grass from pasture fed to the herd in week t (we discuss this further
in Section 8.1.2).

In addition to proposing that grass growth is proportional to evapotranspiration, Moir et al.
[139] give some simple water balance equations to describe how the water in the soil changes
over time. First, there is some maximum quantity of water that can be stored in the soil (and is
available to the plant):

Wt ≤ W̄ , (8.6)

where W̄ is a constant equal to the maximum available water content of the soil. Any excess
water is assumed to drain away. Second, the change in soil moisture Wt from the start of
week t to the start of week t + 1 is limited by the quantity of rainfall rt, plus irrigation it, less
evapotranspiration et:

Wt+1 ≤ Wt + rt − et + it. (8.7)

There are also some domain constraints on the state and control variables, such that:

Pt, Qt,Wt, f
p
t , f

q
t , ht, it ≥ 0, ∀t. (8.8)

Stochastic process

For simplicity, we assume that the rainfall rt, and potential evapotranspiration ept , can be mod-
elled by a stagewise-independent joint stochastic process that empirically samples with replace-
ment from historical readings in week t. We call a single sequence of 52 observations (one for
each week) of the random weather variables, rt and ept , a weather scenario. The stochastic
process can include some stagewise dependence with an increase in complexity of the solution
process. (See Morton and Infanger [140] and Shapiro [189] for different approaches to this.)
However, we choose to model the process using stagewise independence as it is a commonly
used assumption in the SDDP literature [154, 158].

8.1.2 Animal model

Animal models are another critical component of any whole-farm model and are well studied
in the literature [18, 89, 114]. However, like the grass growth models mentioned earlier, these
are complicated nonlinear models that account for a large number of variables. Due to a desire
to maintain tractability of the model with the inclusion of stochasticity, we seek a simplified
version of these models.
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The first decision a farmer faces is their stocking rate (number of cows per hectare). In this
model, we assume the stocking rate is fixed at the start of the season, and we denote it by C̄.
The season begins with the cow giving birth to a calf and starting lactation (we assume that the
cost of raising the calves is a fixed cost, so it is not modelled directly in POWDER). At some
point during the season, the farmer can choose to dry-off a cow (i.e. stop its lactation). This
reduces the required energy intake for the cow (since it is no longer producing milk). However,
once the cow is dried-off, it cannot restart its lactation. Therefore, the farmer faces a stopping
problem; they have to trade-off the decision to keep milking the cow (and earning money)
against managing feed reserves for the next season. We denote the number of lactating cows in
week t as Ct. Each week t, the farmer can choose to dry-off ut cows, so that:

Ct+1 = Ct − ut. (8.9)

In addition, there are some domain constraints, such that: Ct ≥ 0, ut ≥ 0, and C1 = C̄.

Now that we have the concept of a herd (as measured by the stocking rate) and the idea
that cows must be in one of two states (lactating or dried-off), we create a simple model of
a single cow. To do so, we consider an energy balance: energy consumed by the cow in the
form of grass from pasture, or supplements such as hay and silage, must equal the energy spent
on maintenance,4 changes in body condition, pregnancy, and milk production. To simplify the
model, we ignore other factors like nutrition.

Energy requirements

To calculate the energy required by the cow for maintenance, changes in body condition, and
pregnancy, we draw from multiple published models in the literature. It is sufficient for general
readers to understand that, as a result of the model, we can calculate the net energy required
during week t by a cow (excluding milk production) that is lactating (which we denote by εlac

t )
or dried-off (which we denote by εdry

t ). These are set as constants in POWDER. In the following,
we provide more detail about how we calculated the constants εlac

t and εdry
t . Some readers may

want to skip forward to the subsection titled Milk Production.

Maintenance Maintenance is the energy required to run the cow’s core bodily functions. This
can be considered a fixed cost of keeping the cow alive. In order to meet this requirement
when the cow is underfed, energy is mobilised from body fats (decreasing the BCS) and milk
production is reduced. In this model we consider the energy for maintenance to be constant.
The farmer must provide sufficient energy input to meet this requirement. For a 450 kg cow,
Dairy NZ [48] assume the maintenance requirement to be 54 MJ/day.

4Maintenance is the energy required to run the cow’s core bodily functions. This can be considered a fixed cost
of keeping the cow alive.
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Body condition The Body Condition Score (BCS) is an assessment of the proportion of body
fat in a cow and is used by farmers as an important indicator of animal health [178]. A five-point
scale is used, where 1 represents a severely emaciated cow, and 5 represents a severely obese
cow. Over a season, cows typically follow a genetically driven cycle in their Body Condition
Score (although under- or over-feeding can cause the cow to deviate from the typical trajectory).
The cycle begins after the cow calves and starts with the mobilisation of body fat into energy
to contribute to the energetic cost of early lactation. This causes the BCS to decrease. A few
weeks after conception for the next season (100 – 120 days into the season), the cow reverses
this trend and begins to deposit body fat in preparation for the next calving. This causes the
BCS to increase [79].

In this model, we assume that the BCS trajectory is known a priori and that the cow modifies
its milk production to satisfy the energy balance, rather than a combination of both milk pro-
duction and BCS change. These are reasonable assumptions, since deviating from the trajectory
typically represents a poor health outcome for the cow. However, it also reduces the number of
actions the farmer can take, since underfeeding the cow is no longer feasible. This is notably
different to the E-Cow model in the previous chapter, where the BCS was a state variable that
we could control over time.

For the POWDER model, we assume that the cow follows the body condition trajectory as
calculated by the Friggens model5 [79], given an initial body mass of 450 kg and an initial BCS
of 3.2.

Next, we need to relate the change in BCS to the net energy requirements of the cow during
a week. To do this, we draw from Dairy NZ [48], who assume that a one unit change in BCS
corresponds to a change of 14.8% of the cow’s body mass. However, the energy required to
increase body mass by 1 kg is greater than the energy released by decreasing body mass by
1 kg, and this amount of energy depends upon whether the cow is lactating or dry (see Table
8.1). With this information we can calculate the contribution to the cow’s energy balance due
to changes in BCS for each week of the season.

Lactating Cows Dry Cows
1 kg gain in body mass 50 72
1 kg loss of body mass -37 -30

Table 8.1: Energy required per change in body mass (MJ/kg) for cows that are lactating and
dried-off [48].

Pregnancy Dairy NZ [48] give approximate energy requirements for pregnancy at 2, 4, 8,
and 12 weeks before calving, as well as an annual total. To obtain a better estimate, we use the
energy required for pregnancy model of SCA [187] (which is also used in E-Cow). However, it

5The “adjusted” parameter set (as it is called by Friggens et al. [79]) was used as it demonstrated a slightly
better fit for their historical data.
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is our belief that this equation is over-fitted.6 If we assume W = 47 kg, we can fit, using simple
linear regression, the exponential function:

energy for pregnancy = 0.2278e0.01989d, (8.10)

where d is the number of days since conception. The greatest absolute error between the fitted
curve and the original equation is 0.46 MJ/day and, over a 284-day gestation, the simplified
model predicts that the cow will require 6.5 MJ in additional energy for pregnancy. That is
less than 1 kg of pasture over a season. In our view this small discrepancy does not justify the
additional terms in the equation of SCA [187]. This model also gives similar results to the data
given in Dairy NZ [48], which suggests that a cow needs 3240 MJ/year for pregnancy (compared
to 3272 MJ/year from Eq. 8.10), and 21 MJ/day eight weeks before calving (compared to 21.2
MJ/day from Eq. 8.10). Using Eq. 8.10, we can calculate the energy (MJ/day) required by the
cow for a given week t.

Total energy requirements In Figure 8.2, we plot the energy required by the cow over time
when it is lactating (εlac

t ) and dried-off (εdry
t ). Of the total required energy, the fixed cost of main-

tenance (54 MJ/day) represents a large proportion. Towards the end of the season, the energy
required for pregnancy also increases. The solid lines represent the net energy requirements for
changes in body condition (BCS). At the start of the season, the cow loses body condition, so
the required energy is negative. After reaching nadir around conception, the cow begins gaining
body condition and the requirement is positive. Note that dry cows require more energy for
gaining body condition than lactating cows due to the values in Table 8.1.
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Figure 8.2: Energy required per day for lactating and dry cows over the season.

6The full equation is given (in MJ/day) as 9.663×10−5×W 2×e−5.76×10−5d×10151.665−151.64×e−5.75×10−5d

,
where d is the number of days since conception, and W is the birth weight of the calf (kg).
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Milk production

If a lactating cow consumes more energy than the total required (i.e. > εlac
t ), milk will be pro-

duced. Dairy NZ [48] assume that there is a linear relationship between this extra energy intake,
which we denote mt, and the quantity of milk produced. However, cows have a biological max-
imum milk production capacity that varies over the season. Therefore, following the approach
taken by Baudracco et al. [18], we use the alveolar model of Vetharaniam et al. [203] to approx-
imate the maximum production νt (in MJ/week), as well as the net energy content of milk ηmt
as a function of the fat and protein composition based on the work of Freer et al. [78]. However,
for simplicity, we retain the linear relationship between energy input and milk production. The
maximum quantity of energy for milk production is scaled by the number of cows lactating so
that the quantity of milk produced by the herd (kg/week) from the mt MJ of extra energy intake
is mt/η

m
t , where the constant ηmt is the net energy content of milk (MJ/kg). In addition, we

impose bounds on the total energy mt that can be used by the herd for milk production so that:

ν Ct ≤ mt ≤ νt Ct, (8.11)

where the constant ν is the minimum biological rate of milk production (MJ/week) for a single
lactating cow. A lower rate of milk production than ν can lead to lower milk quality and poor
animal health [47].

Supplementation

Palm kernel is a by-product of the production of palm oil [45]. It is commonly used as a
supplementary feed (food that is fed in addition to grass) on New Zealand farms as it has a high
energy content, is easily obtained (typically arriving on-farm within a day or two of ordering),
and is relatively inexpensive. In this model we assume that the farmer orders a quantity st (kg)
of palm kernel on the spot-market and feeds it to their cows during week t. For simplicity, we
ignore the ability of the farmer to store palm kernel and engage in forward contracting programs.
We also ignore other supplementary feeds such as maize.

Energy intake

Recall that in week t, the farmer feeds their herd fpt kg of grass from pasture7 and f qt kg of grass
from storage. In addition, let ηp be the metabolisable energy content of grass (both consumed
from the paddock directly, and stored), and let ηs be the metabolisable energy content of palm
kernel. The total energy consumed by the herd in week t is therefore ηp × (fpt + f qt ) + ηs × st.

7Note that this is consumed directly, rather than the offered quantity as in Chapter 7.
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Finally, we enforce an energy balance constraint for the entire herd so that:

ηp × (fpt + f qt ) + ηs × st︸ ︷︷ ︸
energy intake

= Ct × εlac
t︸ ︷︷ ︸

lactating requirements

+ (C̄ − Ct)× εdry
t︸ ︷︷ ︸

dry requirements

+ mt.︸︷︷︸
milk production

(8.12)

In the energy balance equation, the actions of the farmer are the quantities of grass from
pasture fpt , grass from storage f qt , and palm kernel st to feed. In response, the cows apportion
mt MJ/week to milk production. The reader should note that as a combination of Eq. 8.11 and
Eq. 8.12, the actions of the farmer are constrained so that they must provide sufficient energy
input to meet the minimum demand of the cow (εdry

t if the cow is dry, εlac
t + ν if the cow is

lactating), but no more than the maximum energy demand of the cow (εdry
t if the cow is dry,

εlac
t + νt if the cow is lactating).

In the next section we describe the price model within POWDER.

8.1.3 Price model

There are three components to the price model in POWDER: a milk price model, costs on the
various controls chosen by the farmer, and penalty terms.

Milk price model

First, we describe a model for the price of milk. The contemporary New Zealand milk pro-
cessing sector is dominated by Fonterra, a large processing co-operative that collects 84% of
the milk produced in New Zealand [197]. Members of the co-operative are dairy farmers who
share in the co-operative profits based on the number of kilogram of milk supplied during the
season. The milk price is determined ex-post at the end of each year-long season. Therefore,
during the season, farmers are uncertain about the price they will receive for milk they produce.
Fonterra publish a forecast of the milk price at least every quarter, but these forecasts have large
uncertainties of up to ±50% near the beginning of the season, with these forecasts becoming
more accurate as the season progresses [209, 210]. We shall refer to the final price as the end-

of-season milk price and the forecasts issued by Fonterra during the season as the forecast milk
price.

At the start of each week t = 1, 2, . . . , 52, farmers observe a forecast milk price pt, provided
by Fonterra, of the end-of-season milk price p53. We assume that the first week’s forecast is
p1 = $6/kg (the long-run average end-of-season milk price [77]). In the week after the end
of the season (i.e. week 53), each farmer is paid the end-of-season milk price p53 for each kg
of milk that they produced during the season. For simplicity, we shall model the sequence of
forecast milk prices using nine equally likely scenarios. In each scenario, the forecast does not
change until week 26, when we assume new information emerges leading to an update. No
further updates are made until the final week when the end-of-season milk price p53 is realised.
This process can be represented by a scenario tree which branches at two periods in time:
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between weeks 25 and 26, and 52 and 53, as shown in Figure 8.3. We call a single sequence
of 53 observations of pt (one forecast for each week of the season, plus the end-of-season milk
price) a price scenario.

t = 53t = 52
. . .

t = 26t = 25
. . .

t = 1

$8

$7

$6

$5

$4

Figure 8.3: Scenario tree of milk price process.

As discussed above, we assume that the farmer sells all their milk in the final stage at the
end-of-season milk price associated with the leaf node in the scenario tree. This necessitates
the introduction of a new state variable to keep track of the quantity of milk produced to date:

Mt+1 = Mt +mt/η
m
t , (8.13)

where Mt is the quantity of milk solids produced to date at the start of week t, and ηmt is the
net energy content of milk. In the final week t = 53, the farmer sells the total quantity of milk
produced over the season M53 at the end-of-season milk price p53.

Cost of controls

The second component of the price model in POWDER is the cost that the farmer incurs as a
result of their controls. In each stage t, the farmer incurs a cost of:

csst + chht + ciit, (8.14)

where cs is the cost of palm kernel ($/kg), ch is the cost of harvesting ($/kg), and ci is the cost
of irrigation ($/mm/ha).

Penalties

The third component of the price model is the penalty that the farmer incurs as a result of their
controls. There are two types of penalty costs: a penalty on the final pasture cover, and a penalty
on the quantity of supplement that is fed.

Pasture cover penalty Although POWDER is a single season model, dairy farming is a multi-
year endeavour. Therefore, we need to ensure that the farm is in a better (or equal) condition at
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the end of the season than it was at the start to ensure that the next season’s performance is not
affected. Therefore, we add an artificial variable ∆p ≥ 0 to measure the amount by which the
final pasture cover is less than the initial pasture cover:

P53 + ∆p ≥ P1. (8.15)

Then, we penalise ∆p by a large coefficient (arbitrarily chosen to be 1000) in the objective
function of the final stage.

Fat Evaluation Index penalty Feeding palm kernel as a supplement to lactating cows causes
a change in the ratio of the fatty acids in milkfat. When fed palm kernel at high levels, the
milkfat produced by a cow becomes difficult to process to customer requirements [52]. To
quantify this, a Fat Evaluation Index has been developed by a collaboration of industry groups.
Beginning June 1st, 2018, New Zealand dairy farmers will have their milk graded into four Fat
Evaluation Index grades: A, B, C, and D. An A grade is given to milk that is acceptable for
processing. A B grade is given to milk that is approaching the acceptable limit for processing.
A C grade is given to milk that exceeds the acceptable limit by a small amount. A D grade is
given to milk that exceeds the limit by a large amount. Milk that is graded as a C or D will
incur (currently unspecified) financial penalties. Current information released by the industry
suggests that as a rule of thumb, three kilograms per cow per day is approximately the upper
limit for maintaining an A or B grade [52]. To model the penalties associated with the excess
intake of palm kernel, we introduce a penalty based on the quantity of palm kernel fed per cow
per day (Figure 8.4). We denote the penalty associated with a high Fat Evaluation Index in stage
t by ∆q

t .
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Figure 8.4: Fat Evaluation Index Penalty for differing levels of palm kernel intake. Shaded
vertical bands represent different Fat Evaluation Index grades: A in green, B in orange, and C
in red (D not shown).

Penalties for exceeding the Fat Evaluation Index threshold have not yet been decided and
are likely to be based on the total milk produced, rather than palm kernel fed. As a convex cost
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on palm kernel fed, our approximation preserves the convexity necessary for optimisation using
SDDP.

8.1.4 Optimisation model

In Chapter 1, we described the components of a multistage stochastic optimisation problem:
the policy graph, the states, the controls, the noise terms, the transition function, and the stage-
objective. We now describe each of these in turn for POWDER. The full formulation of SPt,pt
is given as an appendix item in Appendix E.

Policy graph The scenario tree in Figure 8.3 forms a Markovian policy graph with 53 stages:
one Markov state in stages 1 to 25, three Markov states in stages 26 to 52, and five Markov
states in stage 53. The probabilities on all the arcs are uniform in each stage. We denote
each subproblem in the graph as SPt,pt , where t = 1, 2, . . . , 53, and pt is the Markov state
corresponding to the forecast milk prices $4, $5, . . . , $8.

Readers should note that for notational simplicity in the remainder of this chapter, we drop
the subscript of the Markov state. Therefore, when we write xt, we really mean xt,pt .

Noise terms At the beginning of each stage, the farmer observes the potential evapotranspira-
tion ept and the quantity of rainfall rt. This makes the model a Hazard-Decision or Wait-and-See

model. We assume that the farmer is able to observe these random variables at the start of the
week in order to simplify the model. One justification for this simplification is that short-term
weather forecasts are sufficiently accurate to negate the need to complicate the model.

States There are five state variables in the model: the soil moisture Wt, the pasture cover Pt,
the quantity of feed in storage Qt, the number of cows milking Ct, and the quantity of milk
solids produced to date Mt.

Controls After the farmer has observed the state of the farm and the noise, the farmer needs
to decide the quantity of irrigation to apply it, the quantity of pasture to harvest ht, the number
of cows per hectare to dry-off ut, and the quantities of grass from pasture fpt , grass from storage
f qt , and palm kernel st to feed the cows.

Transition function The transition function (and feasible set of controls) is implicitly defined
by equations: 8.3–8.13.

Stage-objective In each stage, the farmer incurs the cost of irrigation, harvesting, and palm
kernel purchases. They will also incur a Fat Evaluation Penalty if they feed too much palm
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kernel. Therefore, the stage-objective in stages t = 1, 2, . . . , 52 is:

−
(
csst + chht + ciit + ∆q

t

)
.

In the final stage problem SP53,p53 , the farmer sells the total quantity of milk produced during
the season M53 at the end-of-season milk price p53 and pays any penalty for low pasture cover.
Therefore, the stage-objective is:

p53M53 − 1000∆p.

Subproblems Putting all of this together, we can describe the subproblem SPt,pt for stages
t = 1, 2, . . . , 52 as the optimisation problem:

SPt,pt : Vt,pt(xt, e
p
t , rt) = max E pt+1,e

p
t+1,rt+1

[
Vt+1,pt+1(xt+1, e

p
t+1, rt+1)

]︸ ︷︷ ︸
future profit

− . . .

. . .
(
csst + chht + ciit + ∆q

t

)︸ ︷︷ ︸
week t cost

s.t. the transition function,

where xt denotes the five state variables (Wt, Pt, Qt, Ct, Mt) at the start of the stage t. Note that
the expectation is with respect to the two stagewise-independent noise terms, ep and r, as well
as the probability of transitioning from Markov state pt to pt+1, which is defined by the policy
graph. The full formulation of SPt,pt is given as an appendix item in Appendix E.

In the final stage t = 53, the subproblems are different as the season has ended and all that
occurs is the final payment of milk:

SP53,p53 : V53,p53(x53) = max p53M53︸ ︷︷ ︸
milk profit

−1000∆p

s.t. P53 + ∆p ≥ P1

∆p ≥ 0.

The objective of the farmer is to maximise the expectation of the first-stage objective:

maxE ep1,r1
[V1,p1(x1, r1, e

p
1)], (8.16)

where x1 defines the initial state of the farm, and p1 = $6/kg as defined earlier.

Summary POWDER models the decision process as follows. At the beginning of week t,
the farmer measures the five state variables in the model: the soil moisture Wt, the pasture
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cover Pt, the quantity of feed in storage Qt, the number of cows milking Ct, and the quantity of
milk solids produced to date Mt. Before choosing an action, the farmer observes the realisation
of the three random variables: the potential evapotranspiration ept , the quantity of rainfall rt,
and the forecast milk price pt. Taking into account the current state and the observation of
the random variables, the farmer decides the quantity of irrigation to apply it, the quantity of
pasture to harvest ht, the number of cows per hectare to dry-off ut, and the quantities of grass
from pasture fpt , grass from storage f qt , and palm kernel st to feed the herd. As a result of
these actions, the system transitions to a new state that will serve as the incoming state in the
next week, and the farmer will incur the cost of purchasing palm kernel, harvesting pasture, and
applying irrigation. In the 53rd week, the farmer sells the milk produced during the season M53

at the end-of-season milk price p53.

8.2 Case study

In this section we investigate the application of POWDER to the farm of the case study in
Section 7.3. The results we obtain will be specific to our chosen farm; however, the case study
can easily be repeated for different farms.

8.2.1 Calibration

We begin by describing how POWDER was calibrated to the farm. The farm is not irrigated, so
it was set to 0 for all stages. In addition, the farmer estimated the cost of harvesting ch at $275/t,
and the metabolisable energy content of grass ηp and palm kernel ηs to be 11 MJ/kg. Further-
more, a maximum lactation length of 44 weeks was set (so that Ct = 0 for t = 45, . . . , 52) as
the farmer considered lactation lengths longer than this to be infeasible. The minimum quantity
of energy for milk production ν was set to 500 MJ/cow/week (0.9 kg/cow/day) based on the
value reported by Dairy NZ [47]. We scaled the net energy content of milk ηmt predicted by the
model of Freer et al. [78] by 1.2 so that it matched the value (≈80 MJ/kg) reported by Dairy NZ
[47]. The stocking rate C̄ was set at 3 cows/ha to match the actual stocking rate on the farm.
The cost of palm kernel cs was set at $0.5/kg. We validated these parameters by showing the
results to the farmer. They confirmed that, given the quantity of feed consumed by the herd, the
simulated milk production in the results below was representative of the farm.

Weather data Historical data were obtained from the NIWA CliFlo database [147] for the
incident rainfall rt and evapotranspiration potential ept from 1 January 1997 to 31 December
2016 for the three closest stations to the farm (Wharawhara Water Stn, Tauranga Aero Stn, and
Whakamaramara). Then, for each week in the dataset, we averaged the data from all three
stations. This resulted in 20 historical readings for each week of the year for both the evapo-
transpiration potential and incident rainfall. Ribbon plots showing the distributions of rainfall
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and evapotranspiration potential by week are given in Figure 8.5.
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Figure 8.5: Empirical distributions for: (a) incident rainfall rt; and (b) evapotranspiration po-
tential ept . In order of increasing darkness, shaded bands correspond to the 0-100, 10-90, and
25-75 percentiles. The dark single line represents the 50th percentile for each week.

We construct a stagewise-independent stochastic process for the weather by empirically
sampling with replacement from historical readings that occurred during each week. There are
20 readings in each week. This gives a total of 2052 possible different weather scenarios for the
stochastic weather process. When coupled with the nine possible price scenarios from the milk
price model, there are a total of 9× 2052 possible scenarios.

Grass model parameters The maximum rate of pasture growth ∆Pmax was assumed to be 65
kg/ha/day, and the maximum pasture cover Pmax was assumed to be 3500 kg/ha. These values
are regional averages obtained from Dairy NZ [48] and from an interview with the farmer. In
addition, the farmer was only able to supply cumulative annual grass growth data. Therefore,
it was difficult to calibrate the soil-fertility index κt. Instead, we calibrated κt by dividing
the monthly average pasture growth of a nearby farm (chosen by the farmer from Dairy NZ
[48]) with the average weekly potential evapotranspiration readings (ept ) for the farm to obtain a
weekly estimate for κt. These weekly estimates were then scaled so that when κt was multiplied
by the historical potential evapotranspiration data for the 2013/14 and 2014/15 seasons, the
annual pasture growth matched the total grown on the farm during the 2013/14 and 2014/15
seasons. The farmer confirmed that the predicted growth rates were representative of the farm.

8.2.2 Solution method

The POWDER model was implemented in the Julia [28] language using the SDDP.jl and
JuMP [132] packages discussed in Chapter 3. Gurobi [99] was used to solve the linear sub-
problems. The model was solved for 1000 SDDP iterations to form an approximately optimal
policy using the initial conditions (W1, P1, Q1, C1,M1) = (150, 2500, 0, C̄, 0). A plot of the
convergence is given in Figure 8.6. The solid line is the upper bound over the iterations. The
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semi-transparent circles correspond to the objective of the forward pass of each iteration. The
model converged to a first-stage objective value (Eq. 8.16) of $2246/ha. After the model had
converged, 1000 Monte Carlo simulations were conducted using the optimal policy and sum-
mary statistics were collected for each of these 1000 scenario realisations.

Using a single thread of an Intel i7-4770 CPU with 16GB of memory, the solution time
is approximately ten minutes. In total, the solution process involved solving over 2.3 million
linear programs. A plot of the solution time of POWDER against the number of iterations is
given in Figure 8.7.
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Figure 8.6: Convergence of POWDER against the number of SDDP iterations. Each point
represents the objective of one forward simulation of the SDDP algorithm. The solid line plots
the evolution of the upper bound over the number of iterations.
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Figure 8.7: Solution time of POWDER against the number of SDDP iterations. Solution time
is quadratic in the number of iterations (r2 = 1).

8.2.3 Results

In Table 8.2, we present statistics to compare the simulated results against the historical average
for the farm data from the 2013/14 and 2014/15 seasons. In all simulations, POWDER imported
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more palm kernel than the farm. This suggests that for the farm, even at a cost of $500/t for
palm kernel (which is larger than the average cost reported in the DairyBase data), feeding a
low constant amount of 3 kg/cow/day of palm kernel is profitable. In addition, due to the extra
feed imports, the lactation length in almost all simulations was longer than that of the farm (a
median of 44 weeks compared with 38.6 weeks). The extra feed and lactation length increased
the milk production per hectare from the historical average of 1193 kg/ha to a median value
of 1360 kg/ha in the simulations (+14% increase). In turn, this increased operating profit from
$2197/ha to a median value of $2542/ha. However, in the worst simulated case the operating
profit was −$1608/ha.

Simulation Percentiles Historical
0 25 50 75 100 Avg.

End-of-season Milk Price ($/kg) 4 5 6 7 8 –
Palm Kernel Cost ($/t) 500 500 500 500 500 –

Lactation Length (weeks) 31.1 44.0 44.0 44.0 44.0 38.6
Milk Production (kg)

per Hectare 1006 1302 1360 1407 1511 1193
per Cow 335 434 453 469 504 398

Milk Revenue ($/ha) 4024 6827 8171 9600 11920 7158
Feed Consumed (t/ha)

Pasture 9.64 11.83 12.16 12.41 13.14 12.15
Palm Kernel 3.58 3.86 4.32 4.41 4.66 2.85

% Feed Imported 22.1 24.5 26.0 26.8 30.6 19
Palm Kernel Expense ($/ha) 1790 1929 2162 2203 2330 1425

Fixed Expense ($/ha) 3536 3536 3536 3536 3536 3536
Operating Profit ($/ha) −1608 1243 2542 3873 6157 2197

FEI† Penalty ($/ha) 96 146 264 297 427 –

Table 8.2: Summary results of 1000 simulations of the SDDP policy. †FEI = Fat Evaluation
Index.

In Figure 8.8 and Figure 8.9, we visualise 1000 Monte Carlo weather simulations for two
different price scenarios. In Figure 8.8, we plot simulations that sampled the high forecast milk
price state during the second half of the year (i.e. p26 = $7/kg), whereas in Figure 8.9, we plot
simulations that sampled the low forecast milk price state during the second half of the year (i.e.
p26 = $5/kg).

In each of the subplots, we plot the 0–100 percentiles of the distribution of the plotted
variable as a light shaded band. The dark shaded bands correspond to the 10–90th percentiles.
The dotted line corresponds to the 50th percentile. In addition, we highlight one randomly
chosen weather scenario out of the 1000 simulations with a thick, solid line. We chose to
highlight the same weather scenario in each plot to show how the weekly farmer decisions vary
with different price forecasts.

We plot the first half of each subplot in grey because both figures visualise the same 1000
weather scenarios, and the new price information is not revealed until week 26. Therefore, the
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Figure 8.8: Simulated seasons that sample a low forecast milk price during the second half of
the season using the optimal policy.
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Figure 8.9: Simulated seasons that sample a high forecast milk price during the second half of
the season using the optimal policy.

simulations for the first half of the year are identical between Figure 8.8 and Figure 8.9. All
the cows are kept milking (Figure 8.8a and Figure 8.9a), and they are fed 4 kg/cow/day of palm
kernel (Figure 8.8e and 8.9e). This level of feeding is at the upper end of the acceptable Fat
Evaluation Index grade scale. This suggests that the small penalty ($0.25/kg/cow/day) that is
incurred is less than the value of the additional milk that is produced. However, differences
in rainfall and evapotranspiration between individual simulated scenarios lead to different tra-
jectories for soil moisture (Figure 8.8c and Figure 8.9c) and pasture growth (Figure 8.8d and
Figure 8.9d). Despite these differences, the pasture cover follows a clearly observable trend.
For the first two months, the rate of grass growth is less than that fed to the cows. This causes
the pasture cover to decrease. However, in late September the pasture growth begins to exceed
the rate of consumption and the pasture cover increases. Pasture growth peaks in late October
before gradually declining over the remainder of the season.

During the second half of the year, the optimal controls diverge depending on the forecast
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milk price that is observed. In the high milk price states (Figure 8.9), the optimal management
strategy is to keep the entire herd milking for as long as possible (Figure 8.9a) in almost all
weather scenarios. This is achieved by increasing the quantity of palm kernel fed to 5 kg/cow/-
day in April (Figure 8.9e). This incurs an additional Fat Evaluation Index penalty. However,
based on the forecast milk price, the expected value of the milk exceeds the cost of the Fat
Evaluation Index penalty.

In contrast, depending on the observed rainfall and evapotranspiration, the trajectories in
the low forecast milk price states (Figure 8.8) begin drying off the herd in February. However,
if weather conditions are favourable for growing grass, the dry-off decision is delayed. In
the trajectory highlighted by the solid blue line, a drought during late February and March
(Figure 8.8c) causes the model to begin drying cows off during February (Figure 8.8a). As
the drought progressively worsens, more cows are dried-off, and the total pasture cover (Figure
8.8b) declines. By April, the drought breaks, and the pasture cover begins to increase. However,
due to the low forecast price, the model does not increase the rate of palm kernel intake (Figure
8.8e) to extend lactation. Instead, the rate of palm kernel intake is increased during June to
avoid the penalty arising from the final pasture cover (Figure 8.8b) being lower than the initial
pasture cover.

The quantity of milk solids produced per day (Figure 8.8f and Figure 8.9f) tends to switch
between the maximum limit and the minimum limit (Eq. 8.11). This bang-bang behaviour is
a well-known artefact of linear optimal control problems. This feature can also be observed in
Figure 8.8e and Figure 8.9e where, in most cases, the optimal quantity of palm kernel to feed is
at one of the break points in the Fat Evaluation Index penalty function (Figure 8.4).

8.2.4 The value of price uncertainty

So far in this chapter, we have modelled the sequence of forecast milk prices by a scenario tree
with 9 scenarios. In this section, we analyse the value that the farmer obtains as a result of
considering this uncertainty.

To investigate this question, we solve a version of POWDER with the forecast milk price
fixed at pt = $6/kg for weeks t = 1, 2, . . . , 52. In final stage t = 53, we realise the same
distribution of end-of-season milk prices p53 as the original scenario tree. This allows us to
quantify the value of learning an updated milk price forecast in week 26 (i.e. when the scenario
tree first branches). We call this model the fixed-price model. We call the policy obtained from
POWDER with the scenario tree based price model the dynamic-price model.

After solving the fixed-price model for 1000 SDDP iterations, we conduct a Monte Carlo
simulation of the policy with 1000 replications. We also simulate the same 1000 replications of
weather and price scenarios through the dynamic-price policy. We provide a density plot of the
two distributions of operating profit in Figure 8.10a. Then, for each of those 1000 replications,
we calculate the difference between the operating profits of the dynamic- and fixed-price po-
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lices. In Figure 8.10b we plot this difference in operating profit against the end-of-season milk
price. Positive differences indicate that the dynamic-price model outperformed the fixed-price
model. It is also interesting to compare Figure 8.10b to Figure 7.7, which we presented in the
previous chapter. Although the exact difference in operating profit is different between the two
figures, the same general trend applies.
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Figure 8.10: Two views of the simulated operating profit from the 1000 Monte Carlo replica-
tions of the dynamic- and fixed-price models. (a) Density plot of the operating profit for the
dynamic- and fixed-price models. (b) Boxplots of the difference in operating profit between
the dynamic- and fixed-price models for 1000 Monte Carlo replications. Positive differences
indicate that the dynamic-price model outperformed the fixed-price model.

On average, the dynamic-price model outperformed the fixed-price model by $11.65/ha
(95% confidence interval of [9.08, 14.22]). This is small in comparison with the expected oper-
ating profit of $2246/ha. However, when the end-of-season milk price was low (p53 =$4/kg),
on average the dynamic-price policy outperformed the fixed-price policy by +$100/ha. This
is because the model is able to dry off earlier and reduce its usage of unprofitable palm ker-
nel. In addition, when the end-of-season milk price was high (p53 =$8/kg), on average the
dynamic-price policy outperformed the fixed-price policy by +$20/ha. This is because the
updated price information in week 26 indicates that a higher level of palm kernel feeding is
profitable. However, when the end-of-season milk price was p53 = $6/kg, the dynamic-price
policy under-performed the fixed-price policy. This is because the dynamic-price policy hedged
its decision-making to account for the chance that the end-of-season milk price was not $6/kg.

In the worst-case, the minimum operating profit increased from −$2135/ha using the fixed-
price policy to −$1871/ha using the dynamic-price policy (+$264/ha). Therefore, a policy that
is responsive to changes in the forecast milk price is especially attractive to risk-averse farmers.

Although the value of considering price uncertainty is small on average in this example,
this may be because there is only a single forecast update during the season. In the next chap-
ter, we model the sequence of forecast milk prices as an auto-regressive process that updates
weekly. Since more information can be learned during the season, the value of incorporating
price uncertainty is shown to be larger.
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8.2.5 A lower stocking rate

The 2015/16 season was characterised by very low international milk prices. As a result, the
end-of-season milk price was $3.90/kg. In order to reduce costs, our farmer reduced their
stocking rate from 3 cows/ha to 2.7 cows/ha. To investigate this decision, we re-solved the
POWDER model with C̄ set to 2.7. All other parameters were kept the same.

In Table 8.3, we present the same set of statistics as Table 8.2. Compared with the case
where the stocking rate was 3 cows/ha, the median operating profit per hectare increased from
$2542/ha to $2846/ha (+12%). This is achieved by increasing per cow production from a me-
dian of 453 kg/year to 502 kg/year, despite the quantity of palm kernel imported decreasing from
a median of 4.32 t/ha to 3.62 t/ha (−16%) and a similar quantity of pasture being grown (12.16
t/ha compared with 12.15 t/ha). One explanation for this is that by decreasing the stocking rate,
the quantity of feed needed to account for fixed costs (such as maintenance and pregnancy)
decreases. Therefore, for a similar quantity of feed, more milk can be produced (provided the
cows are not producing the biological maximum rate of milk production).

Simulation Percentiles Historical
0 25 50 75 100 Avg.

End-of-season Milk Price ($/kg) 4 5 6 7 8 –
Palm Kernel Cost ($/t) 500 500 500 500 500 –

Lactation Length (weeks) 34.6 44.0 44.0 44.0 44.0 38.6
Milk Production (kg)

per Hectare 1021 1297 1355 1398 1472 1193
per Cow 378 480 502 518 545 398

Milk Revenue ($/ha) 4103 6798 8128 9556 11702 7158
Feed Consumed (t/ha)

Pasture 9.64 11.81 12.15 12.39 12.94 12.15
Palm Kernel 2.98 3.23 3.62 3.71 3.98 2.85

% Feed Imported 19.0 21.4 22.8 23.6 28.0 19
Palm Kernel Expense ($/ha) 1489 1617 1812 1855 1989 1425

Fixed Expense ($/ha) 3536 3536 3536 3536 3536 3536
Operating Profit ($/ha) −1275 1551 2846 4162 6312 2197

FEI† Penalty ($/ha) 22 72 173 203 349 –

Table 8.3: Summary results of 1000 simulations of the SDDP policy with stocking rate of 2.7
cows/ha. †FEI = Fat Evaluation Index.

In Figure 8.11 we plot the two distributions in operating profit for both stocking rates. The
five peaks in the density functions (Figure 8.11a) correspond to the five different milk prices that
can be observed. Variations around each peak correspond to the uncertainty associated with the
weather. Under every scenario, the simulated operating profit with 2.7 cows/ha was greater than
the simulated operating profit with 3 cows/ha (Figure 8.11b), and the expected operating profit
(Eq. 8.16) increased from $2270/ha to $2646/ha (+17%). Moreover, this average increase was
fairly constant across the different end-of-season milk prices.
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Figure 8.11: (a) Smoothed density of operating profit ($/ha) under differing stocking rates.
Vertical lines correspond to the mean of each distribution. (b) Boxplots of the difference in
operating profit between the 2.7 cows/ha and 3 cows/ha stocking rate cases. Positive differences
indicate that the 2.7 cows/ha model outperformed the 3 cows/ha model.

Reducing the stocking rate has additional benefits for the farmer that the model does not
capture. For example, costs that are incurred on a per cow basis (which we amortised into a
per hectare figure) such as animal health and young stock management (animals that are too
young to produce milk and are grazed off-farm) will decrease. In addition, the environmental
impact of the farming operation may decrease as there are fewer animals to produce emissions.
Moreover, labour costs will decrease as the time spent performing manual tasks such as milking
will decrease. This suggests that by assuming that the fixed cost per hectare was constant
between the two configurations, we may have underestimated the financial benefit of reducing
the stocking rate.

8.3 Discussion

Our current model only takes ten minutes to solve. This allows scope for a more detailed model.
In particular, the stochastic price model used in POWDER is a simplistic approximation for the
true price process. For simplicity, we have chosen to ignore recent developments such as the
launch of the NZX8 Milk Price Futures [149], and more detailed milk price forecast models
that utilise the twice-monthly GlobalDairyTrade auctions [2]. A more detailed model could be
created by extending the scenario tree approach taken in this chapter and allowing the farmer to
sell milk within the season rather than just at the end.

One of the largest critiques of this model is the way in which we calculate the net energy
requirements of the cow. Readers familiar with cow biology may question the assumption that
the cow follows a predetermined body condition trajectory, with any net energy contributing
linearly to milk production. In reality, the cow will partition the energy between fat deposition

8New Zealand Stock Exchange
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and milk production. Attempts to model this partitioning have resulted in non-convex rela-
tionships (e.g. [18]). This would create a non-convex Bellman function, precluding the use of
SDDP as a solution technique. We justify the approach taken in this model by observing that
variations from the typical body condition trajectory typically represent poor health outcomes
for the animal [178].

A second critique is that to simplify the model, we have assumed that the cows will consume
all of the energy provided by the farmer in the form of grass and palm kernel. This ignores con-
sumption limits, as well as the substitution effect that supplementary feeding has upon pasture
intakes [64]. However, when compared with the DairyBase data from the farm used in the case
study, POWDER produced realistic results that could be meaningfully interpreted.

A third critique is our approximation of the stochastic processes for rainfall and evapotran-
spiration potential. In this chapter, we assume that they are stagewise-independent and drawn
from historical observations. Future work should be conducted to validate these assumptions
and explore alternative processes, such as an auto-regressive process.

Finally, in Chapter 6 we outlined the IDEA (Integrated Dairy Enterprise Analysis) model,
which we consider to be the current state-of-the-art for a multistage optimisation model of a
dairy farm. Although similar in many respects, IDEA and POWDER answer different questions.
IDEA focuses on optimising a detailed model of a farm under deterministic conditions. It
models many variables that POWDER does not, including, for example, the impact of stocking
rate on pasture utilisation. In contrast, POWDER solves a simplified model of a farm that
incorporates stochasticity. This trade-off is necessary in order to maintain tractability of the
model. In the future, it would be interesting to incorporate some of the features of IDEA into
POWDER, such as a heterogeneous herd. It would also be interesting to simulate IDEA using
the dry-off and feeding decisions that arise from POWDER.

8.4 Summary

In this chapter we have described a multistage stochastic optimisation model of a New Zealand
dairy farm. In comparison to other more-detailed, but deterministic models, POWDER relies
upon a simpler farm-level model to provide insight into farm management practices.

We have shown that optimal management strategies for a farm in the Bay of Plenty region
of New Zealand differ based on the combination of economic and weather uncertainties. In
particular, the model is able to decide the quantity of palm kernel to feed and when to dry cows
off, based on the forecast milk price and current pasture cover. We used the model to analyse
the impact of a reduction in stocking rate for the farm. This found that the operating profit
improved in every scenario, even if we exclude the additional environmental and economic
benefits associated with a reduction in stocking numbers.

Overall, this chapter demonstrates that large multistage stochastic programs in an agricul-
tural context can be solved efficiently to generate meaningful insights for practitioners. In the
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next chapter, we extend POWDER to incorporate a more detailed stochastic process for the
end-of-season milk price and introduce forward contracting.

Supplementary materials The Julia code to implement POWDER in SDDP.jl, as well as
the data needed to run the case study and replicate the results in this chapter, is available at
https://github.com/odow/MilkPOWDER.

https://github.com/odow/MilkPOWDER


Chapter 9

Managing risk on a pastoral dairy farm

In this chapter we extend the POWDER model developed in the previous chapter to incorporate
price risk management tools. We demonstrate through simulation that the majority of a farmer’s
downside risk comes from low-price scenarios instead of drought or poor production. We fur-
ther show that without price risk management tools, farmers have little ability to manage their
exposure to downside risk. However, if farmers have the ability to forward sell their milk, they
should forward sell a fixed quantity of milk on the first day of the season, and then operate ac-
cording to a risk-neutral policy ignoring contracting. Alternative methods of risk management,
such as weather derivatives offer some benefit, but this benefit is small due to the large variation
in price compared to other factors.

9.1 Introduction

As we mentioned in Chapter 8, New Zealand is responsible for around 28% of international
exports of dairy commodities. Therefore, New Zealand farmers are highly exposed to volatility
in international commodity prices. In Figure 9.1 we plot a historical index of international dairy
commodity products since 1986. Before the turn of the millennium, the commodity price was
characterised by low volatility about a strong cyclic trend. However, beginning in 2008, the
international dairy commodity price has been characterised by high volatility (>50%). This
coincides with a number of structural changes in the international dairy markets including the
launch of GlobalDairyTrade (an auction platform for dairy commodities [88]), increased milk
consumption in China (and a number of bilateral of free-trade deals) [145], the removal of quota
systems in the European Union [70], and the embargo of milk imports by the Russian Federation
[195].

Regardless of the cause, the volatility in international dairy commodity prices has hurt New
Zealand dairy farmers. Our analysis of the last 18 years of data from Dairy NZ [50] showed that
the yearly operating profit of the average owner-operator (i.e. a farmer who owns the land) had

161
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Figure 9.1: Historical price index of international dairy commodities (100 = January 1986).
Source: ANZ [5].

a coefficient of variation1 of 60%. This can lead to severe stress on the financial performance
of the farm business, as well as the personal life of the farmer [68, 192]. Managing the two
main types of risk (production and price) will reduce the volatility in annual operating profit,
resulting in more efficient cash flow management [80], leading to an improvement in farmers’
overall well-being [192].

Price-risk management tools such as futures and options contracts are becoming increas-
ingly widespread in global dairy markets as a way of managing price uncertainty [192]. How-
ever, the uptake of such tools at the farmer level has been limited, largely due to a lack of
education surrounding the instruments and the potential benefits to their business [207, 208].
Therefore, models that can demonstrate the benefit of forward contracting to risk-averse farm-
ers and provide those farmers with an intuitive understanding of when, and how much, they
should contract, will contribute towards a greater uptake of price-risk management tools.

In addition to price-risk management tools, various authors have investigated weather deriv-
atives as a mechanism for managing production risk in a dairy context (e.g. [42, 58, 142]).
Weather derivatives are financial instruments that can be used to reduce risk associated with
adverse or unexpected weather conditions [3]. Ideally, the derivative would settle against the
variable that the farmer wishes to manage (e.g. total production). However, this leads to the
problems of moral hazard (the farmer may deliberately under-produce in order to claim a pay-
off) and adverse selection (the farmer is more likely to trade the derivative if their farm is more
likely to be affected by drought). Moreover, the compliance cost of assessing damage claims
can be large. Index-based derivatives, which settle against a variable reported by a third-party
that is correlated with the target variable (e.g. local rainfall reported by governmental weather
departments), remove the problems of moral hazard and adverse selection, and lower compli-
ance costs, but introduce basis risk (the reported rainfall will not perfectly match the rainfall
on-farm). We can recommend the work of Alexandridis K. and Zapranis [3] as a good introduc-

1The standard deviation divided by the mean.
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tion to weather derivatives.

One model for solving the pastoral farm management problem is POWDER, which we
introduced in the previous chapter. We provide a brief summary for readers who have not yet
read that chapter.

Summary of POWDER POWDER decomposes the season into a sequence of 53 weekly
blocks (called stages) and links these blocks together by state variables (information that is nec-
essary to communicate the status of the farm between stages). POWDER models the decision
process as follows. At the beginning of week t = 1, 2, . . . , 52, the farmer measures the five
state variables in the model: the soil moisture Wt, the pasture cover Pt, the quantity of grass in
storage Qt, the number of cows milking Ct, and the quantity of milk solids produced to date
Mt. Before choosing an action for the week, the farmer observes the realisation of the three
random variables: the potential evapotranspiration2 ept , the quantity of rainfall rt, and a forecast
for the end-of-season milk price pt. Taking into account the current state and the observation
of the random variables, the farmer decides the quantity of water to apply via irrigation it, the
quantity of pasture to harvest ht, the number of cows per hectare to dry-off (i.e. stop milking)
ut, and the quantities of grass from pasture fpt , grass from storage f qt , and palm kernel st to feed
the herd. As a result of these actions, the system transitions to a new state that will serve as
the incoming state in the next week, and the farmer incurs the cost of purchasing palm kernel,
harvesting pasture, and applying irrigation. In the 53rd week, the forecast milk price becomes
the end-of-season milk price, and the farmer sells all of the milk produced during the season
M53 at the end-of-season milk price p53.

As a simple example of the dynamics in the model, consider Qt, the quantity of grass in
storage at the start of week t. This is a state variable with linear dynamics:

Qt+1 = Qt + βht − f qt ,

where ht is the quantity harvested, and f qt is the amount of grass from storage fed to the cows.
As a result, the farmer incurs a cost of ch × ht in week t, where ch is the cost of harvesting one
kg of grass (a constant in the model).

POWDER is able to model the effect of weather uncertainty on the management actions of
the farmer. However, for price uncertainty, POWDER, uses a scenario tree with nine scenarios,
which limits the model to five possible end-of-season milk price outcomes. Moreover, since it
assumes a risk-neutral decision maker, POWDER does not consider the ability of the farmer to
engage in forward contracting to reduce risk.

In this chapter, we model the forecast for the end-of-season milk price using two variants
of a more sophisticated auto-regressive process. This greatly increases the number of possi-
ble end-of-season milk price outcomes. In addition, we introduce a forward contract for the

2A function of sunlight and temperature that is positively correlated to grass growth.
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end-of-season milk price that trades at the conditional expectation, and we study how risk-
averse farmers can utilise contracts to manage their downside risk. However, the combination
of contracting and an auto-regressive price process leads to a cost-to-go function that is a saddle
function. Therefore, we cannot use the SDDP algorithm in the way we we used in the previous
chapter. Instead, we use the dynamic interpolation algorithm that we discussed in Chapter 4.

This chapter is laid out as follows. In Section 9.2 we formulate two new models for the se-
quence of forecasts for the end-of-season milk price in POWDER and explain how we modified
the POWDER model to incorporate the price models. Next, we perform two case studies using
the farm that we presented in Chapter 7 to study how the farmer utilises the ability to forward
sell their milk under different levels of risk aversion: one in Section 9.3 using the first price
model, and a second in Section 9.4 using the second price model. Finally, guided by the results
of the case studies, we investigate some simple contracting policies in Section 9.5 and explore
alternative risk management tools such as weather futures and put options for the end-of-season
milk price.

9.2 Formulation

In this section we introduce two new models for modelling the sequence of forecasts for the
end-of-season milk price p53, before detailing the modifications we made to POWDER in order
to incorporate these price models. The first price model is an extension of the approach taken
in the previous chapter and models the sequence of forecast milk prices p1, p2, . . . , p52 by an
auto-regressive process instead of a scenario tree. The second price model approximates the
end-of-season milk price as a weighted sum of a series of auction prices over the season. This
is similar to the approach taken by AgriHQ [2].

In addition to the price models, we introduce a forward contract for the end-of-season milk
price p53. This is assumed to trade at the conditional expectation of the end-of-season milk
price in every week (i.e. we assume that there are risk-neutral players in the market). We denote
the forward milk price in week t by pft . In any week t, the farmer can sell these contracts
at the forward milk price pft , less a transaction cost δ. We call this action of selling contracts
forward selling. By selling contracts on the forward market, the farmer has hedged their position
against unfavourable outcomes of the end-of-season milk price. If the farmer forward sells their
milk, then they receive pft instead of the end-of-season milk price p53 for the sold quantity.
In practice, forward selling can occur via a number of ways, including exchange-traded milk
price futures, such as those offered by the New Zealand Stock Exchange [149], or through
bilateral contracts between the farmer and their processor, such as Fonterra’s guaranteed milk
price [192]. However, in this thesis, we consider any generic forward market for milk with a
forward price pft .

At this point, it is also worth clarifying what we mean by “milk price.” We distinguish three
types of milk price:
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1. There is the end-of-season milk price p53. We shall always refer to this as the end-of-

season milk price.
2. In each week t = 1, 2, . . . , 52, there is a forecast pt for the end-of-season milk price,

where pt is the most recent forecast available at the start of week t. We shall always refer
to pt as the forecast milk price.

3. In each week t = 1, 2, . . . , 52, milk can be sold at a price pft via the forward market. We
shall always refer to pft as the forward milk price.

9.2.1 One-state price model

In Chapter 8 the sequence of forecast milk prices is modelled using a scenario tree that branches
at two points in time. This is based on the pattern of forecast updates issued by Fonterra, the
largest milk processing co-operative in New Zealand. We extend this model by assuming that
the sequence of forecast milk prices p1, p2, . . . , p52 can be modelled by a mean-reverting auto-
regressive process in which the variance of the error term φpt diminishes as the end of the season
approaches:

pt = αppt−1 + βp + φpt , (9.1)

where αp and βp are constants in the model, and φpt is a finite-discrete random variable with
mean zero. Furthermore, we assume that the forward milk price in stage t, pft , trades at the
conditional expectation of the end-of-season milk price:

pft = E
[
p53

∣∣∣ pt] , (9.2)

which will typically be different from the unconditional expectation. This assumes that there
are risk-neutral speculators in the market who remove any arbitrage opportunity.

In this one-state price model, there is a single price-state pt, the current forecast milk price.
In the last stage t = 53, the forecast milk price becomes the end-of-season milk price p53.

9.2.2 Two-state price model

In the one-state price model, we assume that the sequence of forecast milk prices can be mod-
elled by an auto-regressive process. However, the end-of-season milk price paid by Fonterra is
actually set by a process regulated by the New Zealand Commerce Commission [77].

As an approximation of this process, the end-of-season milk price can be modelled as the
average price of five so called reference commodity products traded on the GlobalDairyTrade
auction platform over the season.3 The five reference commodity products are: whole milk pow-
der, skim milk powder, anhydrous milk fat, butter, and butter milk powder. The auction prices
are averaged by Fonterra to give the end-of-season milk price based on the relative quantities

3GlobalDairyTrade (GDT) is an international marketplace for dairy commodity products [188].
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of each reference commodity product produced by Fonterra (which we term the product mix),
as well as the fraction of the annual production sold in each auction over the season (which we
term the sales curve). In addition, the prices have to be converted from US dollars to NZ dollars
and an allowance made for the cost of processing raw milk into the five reference commodity
products.

In this improved model, which we term the two-state price model, we assume that the
product-mix weighted average GlobalDairyTrade price in stage t gt (henceforth spot price),
follows an auto-regressive process with lag one:

gt =

αggt−1 + βg + φgt , if an auction is held in week t

gt−1, otherwise,
(9.3)

where αg and βg are constants in the model, and φgt is a finite-discrete random variable. Note
that these are different constants to those in Eq. 9.1. Also, note that this expression accounts for
the twice-monthly pattern of GlobalDairyTrade auctions.

We denote the fraction of total production sold by Fonterra during week t (the sales curve)
by wt. There is a requirement that

∑52
t=1wt = 1. Note that this is Fonterra’s sales curve.

Therefore, it is independent of the farmer (i.e. we assume that the farmer is a price-taker in the
market). wt is a constant in the model.

Over the season, Fonterra collects raw milk, processes it into other products, and sells it in
the GlobalDairyTrade auctions. Therefore, they slowly accumulate sales revenue. We denote
the value of accumulated sales revenue per kilogram in stage t by at. Since the sales curve
wt is known, and the farmer has observed the realisation of the GlobalDairyTrade spot price
g1, g2, . . . , gt, the value of accumulated sales revenue per kilogram can be calculated as:

at =
t∑
i=1

wigi. (9.4)

It follows that at = at−1 + wtgt. Since both the GlobalDairyTrade spot price gt and the sales
curve wt are non-negative, the accumulated sales revenue per kilogram of milk solids at is
monotonically increasing with t. Moreover, the sales curve wt is independent of the farmer’s
production. Therefore, in week t, the farmer is guaranteed a minimum price of at for each
kilogram of milk produced at any time during the season.

Finally, we assume that the forward milk price pft equals the value of accumulated sales
revenue at, plus the expected future value:

pft = E
[
p52

∣∣∣ at, gt] = at + E

[
52∑

i=t+1

wigi

∣∣∣ gt] . (9.5)

As before, this assumes that there are risk-neutral speculators in the forward market who remove
arbitrage opportunities.
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In this two-state price model there are two price-states: the value of accumulated sales at,
and the current spot price gt. In the last stage t = 53, the value of accumulated sales revenue
over the season a52 becomes the end-of-season milk price p53.

9.2.3 Modifications to POWDER

To incorporate the two state-dependent price models into POWDER, we define a control vari-
able mf

t ≥ 0 to be the kilograms of milk sold at the current forward milk price pft in stage t.
Next, we modify Eq. 8.13 from Chapter 8 so that:

Mt+1 = Mt +mt/η
m
t −mf

t , (9.6)

where Mt is the quantity of milk that has been produced, but not sold on the forward market, at
the start of week t.

In addition, for stages t ≤ 52 we modify the value-to-go function Vt, so that for the one-state
price model we have:

Vt(xt, pt, e
p
t , rt, φ

p
t ) = max F ept+1, rt+1, φ

p
t+1

[
Vt+1(xt+1, pt+1, e

p
t+1, rt+1, φ

p
t+1)
]︸ ︷︷ ︸

future profit

−

. . .
(
csst + chht + ciit

)︸ ︷︷ ︸
week t cost

+ (pft − δ)×mf
t︸ ︷︷ ︸

forward sales

s.t. the transition function in Chapter 8
Eq. (9.1), (9.2), (9.6) above,

and for the two-state price model we have:

Vt(xt, gt, at, e
p
t , rt, φ

g
t ) = max F ept+1, rt+1, φ

g
t+1

[
Vt+1(xt+1, gt+1, at+1, e

p
t+1, rt+1, φ

g
t+1)

]︸ ︷︷ ︸
future profit

−

. . .
(
csst + chht + ciit

)︸ ︷︷ ︸
week t cost

+ (pft − δ)×mf
t︸ ︷︷ ︸

forward sales

s.t. the transition function in Chapter 8
Eq. (9.3) – (9.6) above.

In both cases, δ is a constant transaction cost ($/kg) and F is a coherent risk measure as discussed
in Section 1.3. In the final stage t = 53, the farmer receives the end-of-season price p53 for each
kilogram of unsold milkM53 from their processing company. This is identical to the formulation
in Chapter 8.

Note that the value function Vt in stages t = 1, 2, . . . , 52 is a saddle function (i.e. concave
with respect to xt and convex with respect to the price states pt, at, and gt) due to the bilinear
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term involving the forward milk price pft and the quantity mf
t of milk sold on the forward

market. In addition, the value function of the final stage V53 is a saddle function due to the
bilinear term involving the end-of-season milk price p53 and the quantity of unsold milk M53.
These bilinear terms preclude the use of the traditional SDDP algorithm. In the previous chapter,
we overcame this problem by using a Markovian policy graph. However, our problem can be
solved without discretisation using the algorithm we outlined in Chapter 4. We call the version
of POWDER with contracting and the price processes outlined in this section POWDER-II.

9.3 Case study I

In this section we investigate the application of POWDER-II with the one-state price model to
our now familiar farm. Apart from the price process, we use the data from Section 8.2 for all
parameters. The transaction cost δ was set at $0.015/kg (based on current brokerage rates of
firms actively trading in the market). We now detail how we calibrated the price process.

9.3.1 Calibration

Historical sequences of forecast milk prices were obtained from Fonterra [76] for the eight
seasons from 2009/10 to 2016/17 inclusive. These are plotted in Figure 9.2a. The one-state
price model is difficult to calibrate since there are only eight complete seasons of data,4 and
the opening milk price forecasts (i.e. p1) are not identical. However, for each week in the
eight seasons, we calculated the additive change in the forecast milk price compared to the
previous week. This resulted in eight values of possible changes (i.e. one for each historical
season) for the forecast milk price in each week t = 1, 2, . . . , 52. Then, we calculated a final
change between the forecast milk price at the end of week 52 and the end-of-season milk price
p53 in each season. Finally, we constructed a stochastic process for the forecast milk price
by assuming that p1=$6/kg, and that the noise term φpt is sampled with replacement from the
empirical distribution of forecast milk price changes in week t. Therefore, we calibrate Eq. 9.1
as:

pt+1 = pt + φpt . (9.7)

We refer to a single realisation of prices p1, p2, . . . , p53 as a price scenario. In Figure 9.2b
we plot 100 price scenarios for illustrative purposes. In addition, one of the 100 scenarios is
highlighted as a thick, dark line to demonstrate the dynamics of the process.

Since the value of φpt is sampled independently between stages, and accounting for duplicate
observations, there are approximately 1.5× 108 different price scenarios.

Weather uncertainty In this case study, we use the same stagewise-independent stochastic
process for the weather as given in Chapter 8. We refer to a single realisation of evapotranspira-

4Prior to this, Fonterra used a different mechanism for calculating the milk price.
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Figure 9.2: (a) Historical sequences of forecast milk prices issued by Fonterra. Annotated
points are actual end-of-season prices. (b) Simulated realisations of the sequence of forecast
milk prices for one season. Thick, dark line is a single price scenario highlighted for effect.

tion and rainfall outcomes (ep1, r1), (ep2, r2), . . . , (ep52, r52) as a weather scenario. Furthermore,
we sample the weather and price scenarios independently. Therefore, including the 2052 weather
scenarios from Chapter 8, there are approximately 1075 weather and price scenarios.

Risk To model the farmer’s risk-appetite we use coherent risk measures [6]. In particular, we
use a convex combination of the Expectation (E) and Average Value-at-Risk (AV@R) measures
proposed by Shapiro et al. [191]:

F [X] = λE[X] + (1− λ)AV@Rβ[X], (9.8)

where AV@Rβ[X] is the expectation of X below the β quantile and λ ∈ [0, 1].
In this case study, we set β = 0.25 and vary λ to represent different levels of risk-aversion.

These values were arbitrarily chosen to provide illustrative solutions instead of accurately re-
flecting the risk appetite of the farmer. We consider the following six cases:

1. risk-neutral with contracting (λ = 1);
2. risk-neutral without contracting (λ = 1 and mf

t = 0);
3. medium-risk-averse with contracting (λ = 0.5);
4. medium-risk-averse without contracting (λ = 0.5 and mf

t = 0);
5. low-risk-averse with contracting (λ = 0.75); and
6. high-risk-averse with contracting (λ = 0.25).

9.3.2 Solution method

Each of the six instances of the POWDER-II model using the one-state price model described
above were solved for 20,000 iterations using the dynamic interpolation algorithm that we dis-
cussed in Chapter 4 and the SDDP.jl library that we discussed in Chapter 3. The initial
conditions were (W1, P1, Q1, C1, M1, p1) = (150, 2500, 0, 3, 0, 6). We used a virtual-machine
with 16 Intel Xeon E5-2698 CPUs and 64GB of memory. Solution times for 20,000 iterations
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were on the order of 16 hours. In total, the solution process for each model involved solving
over 200 million linear programs.

Since we sample the weather and price scenarios independently, the solution time is much
greater than that reported in Chapter 8 (≈ 10min). Moreover, due to the convergence issues dis-
cussed in Section 4.4.4, many more iterations of the algorithm are needed, further increasing the
computational effort. Compounding this, the lack of cut selection (discussed in Section 4.4.4)
causes the solve time per iteration to increase as the number of cuts added to each subproblem
increases.

Plots of the convergence are given in Figure 9.3 for the risk-neutral case and Figure 9.4
for the medium-risk-averse case with contracting. The solid line is the upper bound over the
iterations. The semi-transparent circles correspond to the objective of the forward pass on each
iteration. Notice that we conduct many more iterations than appears to be necessary by visual
inspection. The reason for this is as follows. Initially, we only conducted 1000 iterations (the
same as in Chapter 8). However, when simulating the policy, sub-optimal decision-making was
observed in a percentage of replications (<10%). Observed sub-optimal behaviour included
drying cows off in the first half of the year and finishing the year with less than 2,500 kg/ha
of pasture cover. We repeated the visualisation test after 10,000 iterations and observed similar
behaviour. Therefore, we chose 20,000 iterations. These results highlight the problems with
standard stopping rules for SDDP, which we discussed in more detail in Section 2.3. In addition,
note that in the risk-averse case (Figure 9.4), the upper bound converges to a value that is less
than the objective of the majority of most forward simulations. This is because we are plotting
the end-of-horizon outcome of each forward pass, rather than the nested outcome that is our
true objective.
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Figure 9.3: Convergence of risk-neutral POWDER-II. Each point represents the objective of
one forward simulation of the SDDP algorithm. The solid line plots the evolution of the upper
bound over the number of iterations.

After each model had converged, a Monte Carlo simulation of the optimal policy was con-
ducted with 2000 replications. The same 2000 weather and price scenarios were used for each
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Figure 9.4: Convergence of medium-risk-averse POWDER-II with contracting. Each point
represents the objective of one forward simulation of the SDDP algorithm. The solid line plots
the evolution of the upper bound over the number of iterations.

simulation. The distribution of these weather and price scenarios over time is shown in Figure
9.5. In each of the subplots within each figure, we plot as shaded bands in order of increasing
darkness, the 1–99 and 10–90th percentiles of the distribution of the plotted variable. The solid
line corresponds to the 50th percentile.

Aug Oct Dec Feb Apr Jun
2

4

6

8

10
(a)

Fo
re

ca
st

 M
ilk

 P
ri

ce
($

/k
g)

Aug Oct Dec Feb Apr Jun
0

10

20

30

40

50
(b)

E
va

po
tr

an
sp

ir
at

io
n

(m
m

/w
ee

k)

Aug Oct Dec Feb Apr Jun
0

100

200

300
(c)

R
ai

nf
al

l
(m

m
/w

ee
k)

Figure 9.5: Distribution of the random variables over time: (a) the milk price forecast pt; (b)
the potential evapotranspiration ept ; and (c) the rainfall rt.

9.3.3 Results

In Table 9.1 we present the same set of statistics to analyse the simulated results of the risk-
neutral policy as those presented in Chapter 8. In each row of the table we give the median
value of the 2000 replications of the optimal policy.5 Note that the values in each row are
calculated independently, so the values in a column of the table may not correspond to the same
simulation.

In the risk-neutral case the optimal contracting policy is to not sell forward, since any con-
tracting incurs a transaction cost. Therefore, the risk-neutral solution with contracting is the
same as the risk-neutral solution without contracting and we omit it from future discussion.

5An exception is the last two rows which give the mean and standard deviation of the operating profit. (The
mean is the objective of the risk-neutral optimisation.)
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Risk Aversion Neutral Medium Low Medium High
Contracting No No Yes Yes Yes

End-of-season Milk Price ($/kg) 6.25 6.25 6.25 6.25 6.25
Palm Kernel Cost ($/t) 500 500 500 500 500

Lactation Length (weeks) 44.0 44.0 44.0 44.0 40.3
Milk Production (kg)

per Hectare 1360 1269 1376 1341 1247
per Cow 453 423 471 447 434

Milk Revenue ($/ha) 8580 8000 8546 8078 7842
Feed Consumed (t/ha)

Pasture 12.17 12.04 12.15 12.02 11.44
Palm Kernel 4.31 3.71 4.29 4.23 4.14

% Feed Imported 26.0 23.5 26.1 26.0 26.4
Palm Kernel Expense ($/ha) 2153 1854 2147 2114 2070

Fixed Expense ($/ha) 3536 3536 3536 3536 3536
Operating Profit ($/ha)

Median 2640 2491 2638 2518 2015
Mean 2604 2457 2586 2488 2000

Standard Deviation 1412 1342 421 436 490

Table 9.1: Summary of Monte Carlo simulations using the one-state price model.

Compared with the risk-neutral case, total pasture consumption in the medium-risk-averse
case without contracting dropped from 12.17 t/ha to 12.04 t/ha, and palm kernel consumption
dropped from 4.31 t/ha to 3.71 t/ha. This led to a decrease in milk production from 453 kg/cow
to 423 kg/cow. The median operating profit dropped from $2640/ha to $2491/ha. However,
when contracting was allowed in the medium-risk-averse case, pasture consumption was simi-
lar to the medium-risk-averse case without contracting (12.02 t/ha compared with 12.04 t/ha),
but palm kernel consumption increased from 3.71 t/ha to 4.23 t/ha (close to the risk-neutral
quantity of 4.31 t/ha). In addition, median operating profit rose from $2491/ha to $2518/ha.
This suggests that forward selling milk gives the farmer certainty that feeding palm kernel is
profitable.

As the risk-aversion level increases in the risk-averse cases with contracting (i.e. more
weight is placed on the AV@R term in Eq. 9.8), the following behaviour is observed. In all
cases, the median operating profit is higher than the mean (i.e. the distribution is left-skewed).
However, as the level of risk-aversion increases, the mean converges towards the median. This
shows how a risk-averse policy shifts the tail of the distribution upwards at the expense of low-
ering the mean. In addition, the lactation length, milk production, and feed consumption all
decrease.

Notably, the low-risk-averse case with contracting has a similar median operating profit to
the risk-neutral case ($2640/ha in the risk-neutral case compared with $2638/ha in the low-risk-
averse case). However, as expected, the risk-neutral case has a higher mean ($2604/ha in the
risk-neutral case compared with $2586/ha in the low-risk-averse case).
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Distributions of operating profit In Figure 9.6 we provide boxplots of the operating profit
for each of the five cases. The light coloured boxes represent cases where contracting was
not allowed, whereas the dark coloured boxes represent cases where contracting was allowed.
We see that there is very little difference between the distribution of the risk-neutral case and
the medium-risk-averse case without contracting. This suggests that even if the farmer is risk-
averse, they have little ability to manage their downside risk through on-farm management
actions such as drying-off their herd early. In contrast, there is a clear difference between
the distribution operating profit for policies with contracting and policies without contract-
ing. The medium-risk-averse policy with contracting performs similarly to the medium-risk-
averse policy without contracting on average (mean of $2488/ha compared with $2457/ha), but
with a much smaller variance in operating profit (standard deviation of $436/ha compared with
$1342/ha).

Risk-Neutral Medium-
Risk-Averse

Low-
Risk-Averse

Medium-
Risk-Averse

High-
Risk-Averse

-2000

0

2000

4000

6000

O
pe

ra
tin

g 
Pr

of
it 

($
/h

a)

Figure 9.6: Boxplots comparing the distributions of simulated operating profit under different
policies using the one-state price model. Light coloured boxes are without contracting. Dark
coloured boxes are with contracting.

Counter intuitively, as we increase the level of risk aversion, the variance of the distribution
increases, the mean decreases, and the lower tail fattens. This is a result of our use of a nested
risk measure. We delay our discussion of this phenomenon until the end of this section.

It is instructive to compare the variation in annual production (in this case, from the risk-
neutral policy) with the variation in the end-of-season milk price (Figure 9.7). Milk production
is typically within ±5% of the mean but can reach ±20% if growing conditions are good or
the farmer is forced to dry-off early. In contrast, the end-of-season milk price can vary by up
to ±50% (i.e. between $3/kg and $9/kg, given a mean of $6/kg). This demonstrates that the
majority of the variance of the unhedged distributions for operating profit in Figure 9.6 comes
from variation in the end-of-season milk price, as opposed to variation in milk production.

To explain the differences in the distribution in operating profit for each of the cases, we
present a number of plots visualising the 2000 replications of the Monte Carlo simulations of
the policies. In each of the subplots within each figure we plot, as shaded bands in order of
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Figure 9.7: Boxplots comparing the distributions of total milk production (kg/ha) (left) and
end-of-season milk price ($/kg) (right), as measured by the percentage deviation from the mean
of each distribution.

increasing darkness, the 1–99 and 10–90th percentiles of the distribution of the plotted variable.
The solid line corresponds to the 50th percentile.

Risk-neutral policy In Figure 9.8 we visualise the optimal risk-neutral policy. We see very
similar results to those of Chapter 8. (The results are not identical since there is a different
distribution for the end-of-season milk price.) In general, most of the herd is kept milking
(Figure 9.8a), the pasture cover follows a seasonal trajectory (Figure 9.8b), and each cow is fed
3–5 kg of palm kernel per day (Figure 9.8c), depending on the forecast milk price (Figure 9.5a)
and time of year. Over the course of the season, the total quantity of unsold milk accumulates
(Figure 9.8d) since there is no forward contracting (Figure 9.8e). Therefore, the farmer sells the
entire quantity of milk produced over the season at the end-of-season milk price p53.
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Figure 9.8: Monte Carlo simulation using the risk-neutral policy.

Medium-risk-averse policy: no contracting In Figure 9.9 we visualise the optimal med-
ium-risk-averse policy when contracting is not allowed. Compared with the risk-neutral case
(Figure 9.8), the policy dries off more cows earlier (Figure 9.9a) to maintain a greater pasture
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cover (Figure 9.9b). This avoids the penalty associated with ending the season with less than
2500 kg/ha of pasture cover (Eq. 8.15). In addition, due to the lower stocking rate, less palm
kernel is fed to the cows (Figure 9.9c). Due to the earlier dry-off and lower rates of palm kernel
consumption, less milk is produced (Figure 9.9d). Since we explicitly forbid contracting (Figure
9.9e), the farmer sells all the milk produced over the season at the end-of-season milk price p52.
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Figure 9.9: Monte Carlo simulation using the medium-risk-averse policy without contracting.

Low-risk-averse policy: with contracting In Figure 9.10 we visualise the low-risk-averse
policy when contracting is allowed. The resulting policy is similar to the risk-neutral case
(Figure 9.8). The herd is dried-off at approximately the same time (Figure 9.10a) and a similar
level of pasture cover is maintained (Figure 9.10b). However, more palm kernel is fed during
the last six months of the season (Figure 9.10c).
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Figure 9.10: Monte Carlo simulation using the low-risk-averse policy with contracting.

In week seven, approximately 1200 kg of milk is sold on the forward market in all scenarios
(Figure 9.10e). This equates to roughly 80% of the total average seasonal production (Figure
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9.10f). Week seven is the last week in which the forecast milk price remains unchanging at
$6/kg (Figure 9.5a). (In week eight there is a chance that the forecast milk price will be down-
graded.) This suggests that the same contracting decision could have been made at any point
in the first seven weeks for an equivalent result. Over the remainder of the season, the farmer
gradually forward sells their milk (via the forward contracts) in small amounts (Figure 9.10e) as
the milk is produced (Figure 9.10d). This attempts to avoid the situation where the farmer sells
more forward contracts than they actually produce. When this occurs, the farmer increases their
exposure to price risk by engaging in the forward market, rather than reducing it. In the Monte
Carlo simulation, over-contracting occurs in approximately 10% of seasons (Figure 9.10f). This
coincides with a season in which low pasture growth forces the farmer to dry-off their herd early,
thereby reducing the quantity of milk they can produce below their contracted level.

Medium-risk-averse policy: with contracting In Figure 9.11 we visualise the medium-risk-
averse policy when contracting is allowed. The resulting policy is similar to the medium-risk-
averse policy without contracting (Figure 9.9). The herd is dried-off at approximately the same
time (Figure 9.11a), and a similar level of pasture cover is maintained (Figure 9.11b). However,
more palm kernel is fed during the first six months of the season (Figure 9.11c).
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Figure 9.11: Monte Carlo simulation using the medium-risk-averse policy with contracting.

In week seven, approximately 1000 kg of milk is sold on the forward market in all scenarios
(Figure 9.11e). This equates to roughly 75% of the total average seasonal production (Figure
9.11f). Following this initial decision, the remainder of the seasons contracting decisions are
similar to the low-risk-averse policy (Figure 9.10). The lower initial quantity (1000 kg com-
pared with 1200 kg in the low-risk-averse policy) could be due to a number of factors. First, we
already observed in Figure 9.6 that the use of nested risk measures can lead to counter-intuitive
results. Second, the model may contract less due to the risk of over-contracting.
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High-risk-averse policy: with contracting In Figure 9.12 we visualise the high-risk-averse
policy when contracting is allowed. Compared with the medium-risk-averse case with contract-
ing (Figure 9.11), the herd is dried-off earlier (Figure 9.12a), but a similar level of palm kernel is
fed (Figure 9.12c). This leads to a slightly higher level of pasture cover over the season (Figure
9.12b).
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Figure 9.12: Monte Carlo simulation using the high-risk-averse policy with contracting.

In week seven, approximately of 800 kg of milk is sold on the forward market in all scenarios
(Figure 9.12e). This equates to roughly 60% of the total average seasonal production (Figure
9.12f). Following this initial decision, the remainder of the season’s contracting decisions are
similar to the low-risk-averse policy (Figure 9.10).

9.3.4 Discussion

Without access to forward markets, farmers have little ability to offset their risk through on-
farm management actions. In contrast, forward selling milk allows the farmer to reduce their
exposure to the greatest contributor to variance in operating profit: price risk. Therefore, at
the start of the season, risk-averse farmers should forward sell a quantity that they are highly
likely to produce over the season. Then, over the season, they should sell further quantities as
they become more confident about their total production volume. The initial sales quantity is
closely tied to the trade-off between the reduction in price-risk from the sold quantity compared
with the increase in risk from over-contracting. However, given the large reduction in variance
compared with the reduction in expected operation profit, even farmers who are risk-neutral
should consider engaging in forward contracting.

Moreover, the results also demonstrate the counter-intuitive results that can arise as a result
of using nested risk measures. Various authors [14, 110, 157] suggest that counter-intuitive
results such as these can arise because the nested risk measure may not reflect the modeller’s
actual risk aversion. In Figure 9.6, we plot the end-of-horizon distribution in operating profit.
However, the risk measures we used in each stage were risk-averse against the stage-objective
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plus the risk-adjusted expectation of the future stages, which were themselves risk-averse against
the risk-adjusted expectation of the future stages. Recall from our example in Figure 1.14 that
this nesting behaviour can lead to perverse outcomes (from an end-of-horizon perspective) when
the model is risk-averse even in good scenarios (e.g. high grass growth and price). As such, al-
though we have a mathematical understanding of the nested risk measures, we have no intuitive
understanding of how the policies will differ as we vary the parameters.

Instead of using nested risk measures, Baucke et al. [14] propose an algorithm for solving
multistage stochastic programs using an end-of-horizon risk measure. In the farming setting, an
end-of-horizon risk measure makes intuitive sense as the farmer is likely to be risk-averse about
the distribution of the entire season’s operating profit, rather than some nested measure.

9.3.5 The value of price uncertainty

In Section 8.2.4 we investigated the value of incorporating price uncertainty into the POWDER
model. We found that, on average, modelling the sequence of milk price forecasts by a scenario
tree with nine scenarios allowed the farmer to increase their expected operating profit by $11/ha.
However, we conjectured that this benefit may increase if a more complicated price process was
modelled. In this section, we analyse the value of modelling the sequence of forecast milk
prices using the one-state price model compared with the fixed-price model that we developed
in Section 8.2.4.

To do so, we take the 2000 replications of the risk-neutral Monte Carlo simulation conducted
above and simulate those replications of weather and price uncertainty using the fixed-price
policy. We provide a density plot of the two distributions of operating profit in Figure 9.13a.
Then, for each of those 2000 replications, we calculate the difference between the operating
profit of the risk-neutral policy with the one-state price model and the fixed-price policy. In
Figure 9.13b we plot this difference in operating profit against the end-of-season milk price.
Positive differences indicate that the risk-neutral model outperformed the fixed-price model.

On average, the risk-neutral model outperformed the fixed-price model by $17.98/ha (95%
confidence interval of [15.76, 20.20]). This is larger than the difference observed in the previous
chapter (+$11/ha), but still small compared to the expected operating profit of $2604/ha. Like
Figure 8.10, the difference is not uniform over the end-of-season milk prices. In low milk
price seasons (i.e. p53 < $5/kg) and high milk price seasons (i.e. p53 > $7.50/kg), the risk-
neutral policy outperformed the fixed-price policy. This reinforces our finding from the previous
chapter that on average, there is little value in considering price uncertainty. However, at the
extremes of the end-of-season milk price distribution, considering updated forecast milk price
information can lead to better decision-making. In the worst case, the minimum operating profit
increased from −$2315/ha using the fixed-price policy to −$1893/ha using the risk-neutral
policy (+$422/ha). Therefore, a policy that is responsive to changes in the forecast milk price
is especially attractive to risk-averse farmers.
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Figure 9.13: Two views of the simulated operating profit from the 2000 Monte Carlo replica-
tions of the risk-neutral policy using the one-state price model and the fixed-price model. (a)
Density plot of the operating profit for the fixed-price and risk-neutral policies. (b) Scatter plot
of the difference in operating profit between the risk-neutral and fixed-price policies. Posi-
tive differences indicate that the risk-neutral model outperformed the fixed-price model. Thick,
dashed, horizontal line is the mean difference.

9.4 Case study II

In this section we investigate the application of POWDER-II with the two-state price process to
the same farm considered in the previous section.

Initially, we modified the model from Section 9.3 by substituting the one-state price process
for the two-state price process. In addition, 10 possible observations for the price noise φgt (Eq.
9.3) were sampled in each stage. However, the problem was very large. There were 52 stages,
five concave states, and two convex states. In addition, we sampled the Cartesian product of
the weather and price scenarios. Therefore, there were approximately 1092 combinations of
weather and price scenarios. Given that POWDER-II with the one-state price process already
took orders of magnitude longer to solve than POWDER, we could not solve POWDER-II with
the two-state price process as formulated in a reasonable time. Thus, to simplify the problem
and make it easier to solve, we make a number of modifications to POWDER-II. These changes
are:

1. the aggregation of stages from 52 weeks to 24 twice-monthly blocks;
2. the removal of the feed storage state Qt so that Qt = ht = f qt = 0 ∀t;
3. the reduction in the number of elements in the sample space of the weather noise from 20

to 10; and
4. the reduction in the number of elements in the sample space of the price noise from 10 to

5.

This reduces the number of stages from 52 to 24, the number of states from seven to six, and
the total number of scenarios from 1092 to 1041. As before, we use the same data as in Section
9.3. We now detail how the two-state price process was calibrated.
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9.4.1 Calibration

Historical GlobalDairyTrade data was obtained from June 1st, 2010 (Auction 24) until Novem-
ber 22nd, 2017 (Auction 200).6 This data included the average winning sales price for the five
reference commodity products (whole milk powder, skim milk powder, anhydrous milk fat, but-
ter, and butter milk powder) in each auction. For each auction, the five prices were averaged
using the quarterly product mix reported by Fonterra [76] to obtain a product-weighted average
sales price. Next, the product-weighted average sales price was converted from United States
dollars into New Zealand dollars using the average exchange rate achieved by Fonterra over the
last seven years (0.75 USD/NZD) [76]. Lastly, the average processing cost of NZ$2.10/kg [76]
was subtracted from the product-weighted average sales price to obtain an estimate for the price
of milk in each auction that was distributed to the farmers (i.e. gt in Eq. 9.3). This methodology
is also used by AgriHQ [2]. Finally, ordinary least squares was used to estimate the parameters
in Eq. 9.3. This gives:

gt+1 = 0.97658gt + 0.14266 + φgt . (9.9)

This is equivalent to the mean-reverting process:

gt+1 = λgt + (1− λ)µ+ φgt ,

where λ = 0.97658, and the mean µ = $6.09/kg. For simplicity, the distribution of φgt was
created by dividing the residuals of the ordinary least squares model into five sets according to
the quintiles, taking the mean of each set, and then subtracting the mean of the five values so
that E[φgt ] = 0. We refer to a single realisation of GDT prices g1, g2, . . . , g52 as a price scenario.
In Figure 9.14a we plot the historical spot price gt as a thick, blue line. In addition, we plot 50
simulated price scenarios of the spot price using Eq. 9.9. The thin, black line is one randomly
chosen price scenario. The highlighted price scenario demonstrates similar behaviour to that
observed in the historical data. The orange, dashed line is the historical long-run mean of the
spot price ($6.09/kg). Since the value of φgt is sampled independently in each of the 24 stages,
there are 524 ≈ 6× 1016 possible price scenarios.

To estimate the sales curve wt, we extracted the monthly contracted sales volume of the
reference commodity products from Fonterra [76] for the last five seasons, and then normalised
each season to estimate the fraction of sales that were contracted each month. Then, for each
month, we averaged the five seasons, before again normalising the average sales curve so that∑

t=1,...,T wt = 1. The final sales curve is shown in Figure 9.14b. Note that we assume that the
two auctions in each month have the same sales fraction.

6This information was publicly available until July 2016. Since then, historical data has been moved behind
a paywall. This chapter uses data from an Excel file published by GlobalDairyTrade prior to July 2016, as well
as data manually collected by the author that is published at http://www.globaldairytrade.info/en/
product-results/ after each trading event.

http://www.globaldairytrade.info/en/product-results/
http://www.globaldairytrade.info/en/product-results/
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Figure 9.14: (a) Simulated sequences (grey) of GDT spot price gt. The thin, black line is
one randomly chosen sequence. The thick, blue line is the historical sequence. The dashed,
horizontal line is the long-run average spot price ($6.09). (b) Estimated sales curve wt.

9.4.2 Solution method

The POWDER-II model using the two-state price process was solved for 20,000 iterations us-
ing the dynamic interpolation method from Chapter 4 in a risk-averse setting (λ = 0.5) with
contracting. The initial conditions were (W1, P1, C1,M1, g1, a1) = (150, 2500, 3, 0, 6, 0). After
the model had converged, a Monte Carlo simulation of the optimal policy was conducted with
5000 replications. The model was solved using a virtual-machine with 16 Intel Xeon E5-2698
CPUs and 64GB of memory. The solution time for 20,000 iterations was on the order of 10
hours. In total, the solution process involved solving over 52 million linear programs.

9.4.3 Results

In Table 9.2 we present statistics from the 5000 replications of the Monte Carlo simulation.
Compared to the one-state price model policies (Table 9.1), the two-state policy consumes more
grass (median of 12.87 t/ha compared with ≈12.1 t/ha) and produces more milk (median of
1445 kg/ha compared with ≈1370 kg/ha). However, due to the lower median end-of-season
milk price in the two-state price model ($6.10/kg) compared with the one-state price model
($6.25/kg), the median operating profit is similar to the low-risk-averse one-state solution with
contracting ($2627/kg compared with $2638/kg).

The distribution of the simulated end-of-season milk prices using the two-state price model
(first row of Table 9.2) fits the distribution of the eight historical examples of the Fonterra
end-of-season milk price (Figure 9.5a): the simulated median was $6.10/kg compared with
the historical median of $6.09/kg, while two out the eight years fell below the 25th percentile
($4.40/kg in 2014/15 and $3.90/kg in 2015/16), and two out the eight years fell above the 25th

percentile ($7.60/kg in 2010/11 and $8.40/kg in 2013/14).

In Figure 9.15 we visualise the optimal risk-averse policy with contracting and the two-state
price process using subplots similar to those presented in Section 9.3. However, instead of
plotting the distribution of all 5000 replications, we partitioned the replications into two subsets
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Simulation Percentiles
0 25 50 75 100

End-of-Season Milk Price ($/kg) 3.32 5.58 6.10 6.60 8.67
Palm Kernel Cost ($/t) 500 500 500 500 500

Lactation Length (months) 7.5 10.0 10.0 10.0 10.0
Milk Production (kg)

per Hectare 1004 1365 1425 1469 1636
per Cow 335 455 475 490 545

Milk Revenue ($/ha) 7026 8436 8794 9064 10580
Feed Consumed (t/ha)

Pasture 10.84 12.66 12.87 13.07 13.73
Palm Kernel 1.5 3.47 4.03 4.22 5.52

% Feed Imported 10.9 21.3 23.7 24.8 30.8
Palm Kernel Expense ($/ha) 751 1735 2017 2109 2759

Fixed Expense ($/ha) 3536 3536 3536 3536 3536
Operating Profit ($/ha) 821 2451 2627 2806 3647

Mean Operating Profit ($/ha) 2625

Table 9.2: Summary of Monte Carlo simulation for risk-averse policy with two-state price
model.

in order to highlight how different sequences of forecast milk prices lead to different sequences
of actions. The first subset, plotted in blue, is the set of all replications that sampled a spot price
in the bottom 20% of values in the 12th stage (i.e. g12 ≤$5/kg). The second, plotted in orange,
is the set of all replications that sampled a spot price in the top 20% of values in the 12th stage
(i.e. g12 ≥$7.05/kg). Since there were 5000 replications, each of these subsets contains 1000
replications. In addition to the subplots (a) to (f), we present three new subplots: Figure 9.15g,
the spot price gt; Figure 9.15h, the accumulated value of sales revenue at; and Figure 9.15i, the
forward milk price pft .

Accounting for the difference in staging, we see very similar results to those of the risk-
neutral policy using the one-state price process. (The results are not identical as there is a
different distribution for the end-of-season milk price.) The herd is dried-off at approximately
the same time (Figure 9.15a), a similar level of pasture cover is maintained (Figure 9.15b), and a
similar quantity of palm kernel is fed (Figure 9.15c). Compared with the low-price replications
(plotted in blue), the high-price replications (plotted in orange) milk the cows for longer (Figure
9.15a), approach the end of the season with less pasture cover (Figure 9.15b), and feed more
palm kernel (Figure 9.15c). The result of these three changes is to increase total milk production
(Figure 9.15d).

Notably, the solution over-contracts (i.e. it sells more milk forward than is produced over
the season) in approximately 10% of simulations (Figure 9.15e and f), even though doing so
exposes the farmer to increased price risk.
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Figure 9.15: Monte Carlo simulation using the optimal risk-averse policy with contracting and
the two-state price process.

9.4.4 Discussion

We cannot directly compare the policies of the one-state and two-state price models with con-
tracting since, even for the same price and weather scenarios, they will have different estimates
for the conditional expectation of the end-of-season milk price (i.e. the forward milk price).
Therefore, the policies will incorrectly perceive an arbitrage opportunity and make sub-optimal
decisions.

We conjecture that over-contracting is not an optimal decision, and that seeing such deci-
sions in the simulation of the policy arises from terminating SDDP before the policy has con-
verged in all possible states. If we perform more iterations, the policy will converge; however,
this is computationally expensive. Nevertheless, the general trends observed in both case stud-
ies appear consistent. An initial quantity of milk is contracted early in the season (although the
exact quantity depends upon the farmer’s risk appetite), and if necessary, more is sold during the
season. Furthermore, the farmer feeds between three and four kilograms of palm kernel per cow
per day over the season, increasing to five kilograms if the price is high, and dropping to three
is the price is low. These results also suggest that the simplifications we made (reducing the
number of stages, removing the storage state Qt, and reducing the number of noise realisations)
did not have a large impact on the general farm management policy. However, at the same time,
incorporating a more detailed price process did not yield any new insights. This is because the
decisions of the farmer in week t are largely based on the forward milk price pft . Assuming that
this price is an unbiased estimator for the end-of-season milk price, the farmer does not need to
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consider whether the spot price gt is high (and therefore likely to mean revert downwards) or
low (and therefore likely to mean revert upwards) since that information will be reflected in the
forward milk price. Therefore, in the remainder of this chapter, we only consider the results of
the one-state price process.

9.5 Pre-season contracting

In the previous two sections we described the solution of large multistage stochastic programs
with integrated risk management. In this section, we explore a class of simpler risk management
strategies.

9.5.1 Milk price futures

In the results of the case studies, the general contracting trend is to sell a large quantity of
milk on the forward market early in the season, and then slowly sell additional contracts as
the season unfolds. Therefore, we propose a heuristic that contracts a fixed amount on the
first day of the season and then operates according to a policy we constructed in Section 9.3,
ignoring the optimal contracting decisions. These represent a simple and implementable class of
contracting policies, although the results will not be optimal since the farmer could have made
different management decisions during the season as a result of knowing the initial contracting
decisions.

To investigate this contracting heuristic, we first choose a policy from Section 9.3 (i.e. the
risk neutral model with the one-state price process). Then, we take the 2000 replications of the
corresponding Monte Carlo simulation and post-process the data assuming different contracting
decisions were made prior to the start of the season. We denote the set of 2000 replications as
our sample space Ω, and each replication as a scenario ω in that sample space. The unhedged
return in scenario ω, Rω, is the cumulative cost of the scenario assuming that no contracting
decisions were made.

If the farmer sells hp kg of milk price futures on the first day of the season, then the hedged
return Xω for the farmer in scenario ω ∈ Ω is:

Xω = Rω + hp (E ω[p53,ω]− p53,ω) , (9.10)

where p53,ω is the end-of-season milk price in scenario ω. For simplicity, we ignore transaction
costs.

In Figure 9.16, we plot the distribution in operating profit that arises from applying this
heuristic to three policies: (1) the fixed-price policy from Section 8.2.4 (Figure 9.16a), (2)
the risk-neutral policy (Figure 9.16b), and (3) the medium-risk-averse with contracting policy
(Figure 9.16c). On the x-axis of each subplot, we plot the initial contracting amount hp, and
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on the y-axis, we plot the hedged operating profit Xω. The dotted grey lines represent selected
percentiles of the distribution in operating profit (0, 10, 25, 50, 75, 90, and 100) as we vary
the initial contracting amount hp. The thick, black line is the mean of the distribution of the
hedged operating profit Xω, while the thick, curved, dashed line is the standard deviation of the
hedged operating profit. The vertical line is the contracting amount that minimises the standard
deviation. This quantity is well known in the literature as the Minimum Variance Hedge Ratio

[26]. (See Appendix F for a derivation showing why this is the case.)

Definition 33. Minimum Variance Hedge Ratio: Given a vector of unhedged returns Rω and a
vector of the prices of the hedge instrument pω, such that the hedged return Xω is:

Xω = Rω + h(E ω[pω]− pω),

the quantity h∗ that minimises the variance of Xω is:

h∗ =
cov(R, p)

var(p)
.

We refer to h∗ as the minimum variance hedge ratio.

For our experiments, the minimum variance hedge ratio is 1366 kg for the fixed-price case
(Figure 9.16a), 1344 kg for the risk-neutral case (Figure 9.16b), and 1329 kg for the medium-
risk-averse case with contracting (Figure 9.16c). The values are approximately equal to the
expected annual production in each case. By examining the figures, it is possible to identify
other desirable hedge ratios based on different risk measures. For example, a smaller quantity
than the minimum variance hedge ratio allows the farmer to capture more of the upside potential
without negatively affecting their downside risk. Note that the expected return (thick black line)
does not change with the contracting amount as we ignored transaction costs.

In each of Figures 9.16d, 9.16e, and 9.16f, we present scatter plots of the operating profit
for the unhedged (dark) and optimally hedged (using the minimum variance hedge ratio) (light)
cases against the end-of-season milk price. In the unhedged case, there is a strong correlation
(r ≈ 0.95) between the operating profit and end-of-season milk price p53. However, in the
hedged case, the relationship between end-of-season milk price and operating profit has been
removed (r = 0.0). Moreover, there is very little difference between the fixed-price, risk-
neutral, and medium-risk-averse policies. This is also shown by the density plots in Figures
9.16g – 9.16i, which plot the distribution of the hedged (dashed) and unhedged (solid) operating
profit for each policy.

Therefore, a potentially good hedging strategy is to choose a policy (e.g. the risk-neutral
policy), simulate the distributions of price and operating profit using that policy, contract the
minimum variance hedge on the first day of the season, and then operate according to the chosen
policy. On our farm, the minimum variance hedge ratio is very close to the expected milk
production. Therefore, the hedging “rule of thumb” that could be communicated to the farmer
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Figure 9.16: Distribution in operating profit assuming a single contracting opportunity on the
first day of the season. Figures (a) – (c): plots of operating profit against the contracted amount
hp. Light, dashed lines are selected percentiles of the distribution in operating profit. Solid,
horizontal line is the mean of the distribution. Curved, dashed line is the standard deviation of
the distribution. Vertical line is the contracting amount that minimises the standard deviation.
Figures (d) – (f): scatter plot of operating profit against the end-of-season milk price. Dark
coloured dots are the unhedged returns, light coloured dots are the returns after hedging the
milk price futures at the minimum variance hedge ration. Figures (g) – (i): density plots of the
distribution of operating profit for the hedged (dashed) and unhedged (solid) returns.

is “on the first day of each year, hedge the average of your production over the last five seasons.”
This is a simple, intuitive contracting policy that can easily be understood by the farmer.

The choice of operating policy is up to the farmer. However, our results suggest that for
the farm in our case study, there is little difference between a policy that ignores price (i.e. the
fixed-price policy), a policy that is risk-neutral and considers the forecast milk price on a weekly
basis (i.e. the risk-neutral policy), and a risk-averse policy that considers the forecast milk price
on a weekly basis (i.e. the medium-risk-averse policy with contracting). Therefore, it is likely
that our farmer does not need to change their current operational decisions when they forward
contract for milk.

Moreover, many large farms in New Zealand are run by corporations who own multiple
farms. Such corporations centralise their financial operations while delegating on-farm opera-
tions to local managers. These results suggest that these corporations can significantly reduce
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their exposure to price risk by forward selling a proportion of their total milk production, with-
out needing to change on-farm management practices.7

9.5.2 Weather derivatives

Milk price futures enable the farmer to remove a large component of the variance in operating
profit. However, they are still exposed to production risk as a result of the weather. Weather
derivatives are financial instruments that can be used to reduce the risk associated with adverse
or unexpected weather conditions [3]. In what follows, we introduce three hypothetical weather
futures, and then assess their utility as risk management tools. To do so, we follow a similar
methodology to that described for the milk price contracting above. However, we only analyse
the risk-neutral policy.

Grass-growth derivative

First, let us consider a futures contract hg that settles against the total quantity of grass grown
over the course of a season on the farm. We assume that it works as follows. If the annual grass
growth is less than the average, then the seller of each contract receives $1 for every kilogram of
the difference between the expected and actual growth. If the annual grass growth is greater than
the expected growth, then the seller of each contract must pay the buyer $1 for every kilogram
of the difference. The buyer is likely to be someone whose profit is negatively correlated with
grass growth (e.g. a supplier of palm kernel, since the farmer will purchase less palm kernel if
they have excess grass).

Since grass growth is a function of farm management decisions, the contract hg is not an
index derivative.8 Therefore, it is unlikely to be offered in practice. Nevertheless, we investigate
its performance. After the milk price has been hedged using the forward contract hp at the
minimum variance hedge ratio, the correlation between the hedged operating profit and the
cumulative annual grass growth is≈ 0.97. Therefore, hedging both the milk price and the grass
growth will remove the majority of the variance in operating profit.

If the farmer sells hg kg of grass-growth contracts, then the hedged return Xω for the farmer
in scenario ω of the 2000 Monte Carlo replications is:

Xω = Rω + hg

(
E ω

[
52∑
t=1

gt,ω

]
−

52∑
t=1

gt,ω

)
, (9.11)

where Rω is the unhedged return in scenario ω, and gt,ω is the quantity of grass grown during
stage t in scenario ω.

7See Brealy et al. [35, Ch. 26] for a related discussion on the intra-firm transfer of risk from each division (i.e.
farm) to a central treasury.

8Recall than an index derivative settles against an underlying variable reported by a third-party.
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Evapotranspiration derivative

POWDER assumes that grass growth is linearly related to evapotranspiration (which, we recall,
is a function of air-temperature and sunlight). Therefore, although actual grass growth is also
limited by the pasture cover and soil moisture, it is likely that the grass growth gt is correlated
with the potential evapotranspiration ept . (Note that the potential evapotranspiration in week t,
ept , is distinct from the actual evapotranspiration et.) Since the potential evapotranspiration is
a random variable that is not controlled by the farmer, it is an attractive index against which
to settle a derivative. However, after the end-of-season milk price has been hedged (again at
the minimum variance hedge ratio), the correlation between the operating profit and the total
potential evapotranspiration is ≈ 0.003. Therefore, we can expect that hedging the evapotran-
spiration will have a minimal effect on the remaining variance.9 Despite this, we consider a
futures contract he that settles against the cumulative potential evapotranspiration over the sea-
son. We assume that it works as follows. If the cumulative evapotranspiration is less than the
average, then the seller of each contract receives $1 for every mm of the difference between the
mean and actual accumulation. If the cumulative evapotranspiration is greater than the average,
then the seller of each contract must pay the buyer $1 for every mm of the difference. The buyer
is likely to be someone whose profit is negatively correlated with potential evapotranspiration
(e.g. a supplier of palm kernel since the farmer will purchase less palm kernel if they have
excess grass).

If the farmer sells he mm of potential evapotranspiration contracts, then the hedged return
Xω for the farmer in scenario ω of the 2000 Monte Carlo replications is:

Xω = Rω + he

(
E ω

[
52∑
t=1

ept,ω

]
−

52∑
t=1

ept,ω

)
, (9.12)

where Rω is the unhedged return in scenario ω, and ept,ω is the potential evapotranspiration
during stage t in scenario ω.

Rainfall derivative

The poor correlation (r ≈ 0.003) between potential evapotranspiration and operating profit is
surprising. Other indices (such as annual rainfall) were investigated but found to also correlate
poorly with operating profit. However, one index that is correlated (r = 0.57) to the operating
profit is the log of the cumulative rainfall during the summer period of stages 21 to 30 (i.e.
December to March). (The log function accounts for the fact that very low rainfall can force the
farmer to dry-off early, so the reduction in operating profit is nonlinear with declining rainfall.)
Since rainfall is not controlled by the farmer and is strongly correlated with pasture growth,
it is an attractive index derivative which has been explored in the literature (dating back to

9The minimum variance hedge ratio is proportional to the correlation coefficient.
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Chakravarti [41]10). If the farmer sells hr rainfall contracts, then the hedged return Xω for the
farmer in scenario ω of the 2000 Monte Carlo replications is:

Xω = Rω + hr

(
log

(
E ω

[
30∑
t=21

rt,ω

])
− log

(
30∑
t=21

rt,ω

))
, (9.13)

where rt,ω is the quantity of rainfall during stage t in scenario ω.

9.5.3 Comparison and discussion

In Figure 9.17 we plot the distribution of operating profit for six different hedging strategies.
The first two strategies (lighted coloured boxes) are from the first case study in this chapter
(Section 9.3). They are:

1. Risk-Neutral: the risk-neutral policy without contracting; and
2. Low-Risk-Averse: the low-risk-averse policy with contracting.

The other four policies (dark coloured boxes) use the simple contracting heuristics outlined
in this section. They use the 2000 replications of the risk-neutral Monte Carlo simulation as
the sample space Ω. In each case, we assume that the farmer sells the minimum variance hedge
ratio. The four strategies are:

3. Price Only: sell hp (Eq. 9.10);
4. Price + Evapotranspiration: sell hp (Eq. 9.10) and then he (Eq. 9.12);
5. Price + Rainfall: sell hp (Eq. 9.10) and then hr (Eq. 9.13); and
6. Price + Growth: sell hp (Eq. 9.10) and then hg (Eq. 9.11);

The distributions for ‘Growth Only’ (i.e. only sell hg), ‘Evapotranspiration Only’ (i.e. only sell
he), and ‘Rainfall Only’ (i.e. only sell hr) are indistinguishable from the ‘Risk-Neutral’ case, so
we omit them.

Compared with the ‘Risk-Neutral’ distribution, all hedging strategies reduce the variance
in operating profit. The ‘Low-Risk-Averse‘ policy, which is able to dynamically make con-
tracting decisions during the season, has a distribution that is very similar to the ‘Price Only‘
distribution. This suggests that the ability to sell contracts during the season offers limited
benefit to the farmer compared with only selling on the first day of the season. The ‘Price
Only’ and ‘Price+Evapotranspiration’ distributions are identical. This is due to the low cor-
relation between the annual cumulative potential evapotranspiration and the operating profit.
Moreover, even though the log of the summer rainfall was moderately correlated with operating

10This monograph was re-discovered by Mishra [138]. The use of the multiplicative, rather than additive means
to assess rainfall also has historical precedent dating back to Chakravati: “the key point to consider is not the
absolute amount of rainfall in any particular year but the percentage of deviation from the average” [138]. However,
Chakravati’s proposed scheme was a form of insurance that paid a fixed lump sum if the cumulative rainfall was
below a certain threshold, rather than the contract-for-difference proposed here.
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Figure 9.17: Boxplots comparing the distributions of operating profit under different hedging
strategies.

profit (r = 0.57), the distribution of the ‘Price+Rainfall’ hedging policy is similar to the ‘Price
Only’ distribution – although the standard deviation has decreased from $415/ha to $338/ha. In
contrast, hedging price and grass growth (‘Price+Growth’ distribution) removes almost all the
variance in operating profit. The remaining variance is due to differences in timing of when the
grass grew and different sequences of the forecast milk prices during the season.

These results suggest that after hedging price risk, the next greatest contributor to variation
in operating profit is variation in grass growth. However, as we described earlier, derivatives
that settle against actual grass growth are impractical to provide in practice, while simple index
derivatives such as summer rainfall are limited by the basis risk that they introduce. Authors
such as Vedenov and Barnett [202] reach similar conclusions and note that “rather complicated
combinations of weather variables must be used in order to achieve reasonable fits of the rela-
tionship between weather and yield.” Expanding on this idea, another option is to provide an
index derivative that settles against a simulated estimate of grass growth. Commercial grass
growth estimation tools such as FARMAX already exist [73], and there is a large literature on
different modelling approaches [37, 115, 139, 176]. A key benefit of this approach is that since
the inputs to the model are not controllable by the farmer, there is no moral hazard. However,
such models would need extensive calibration in order to reduce the basis risk.

Another approach that greatly reduces compliance costs (although not the moral hazard) is
to use remote sensing to estimate the grass growth. Attempts to use satellite imagery to estimate
grass growth date back to at least Taylor et al. [196] and have been used with some success (e.g.
[106, 107]). In the New Zealand setting, at least one commercial tool based on satellite imagery
is already in development (LIC SPACETM – Satellite Pasture And Cover Evaluation).11 Remote

11https://www.lic.co.nz/products-and-services/space/

https://www.lic.co.nz/products-and-services/space/
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sensing data could also be used to calibrate other simulation models such as the ones described
above.

9.5.4 Milk price options

In the sections above, we have limited our analysis to futures contracts. However, another
widely used class of derivative is the option contract. In particular, we consider the farmer
buying European put options, one contract of which gives them the right to sell one kilogram
of milk at a predetermined strike price so at the end of the season.12 In return for this right, the
farmer pays the seller of the put option a premium co. As before, we assume that this contracting
decision happens on the first day of the season and that we operate according to the risk-neutral
policy using the one-state price model. We set Ω to be the set of 2000 Monte Carlo replications
simulated for the risk-neutral policy in Section 9.3.3

If the farmer buys ho put options with a strike price so at a cost co per put, then the hedged
return Xω for the farmer in scenario ω ∈ Ω is:

Xω = Rω + ho × (max {0, so − p53,ω} − co) , (9.14)

where Rω is the unhedged return in scenario ω, and p53,ω is the end-of-season milk price in
scenario ω. We assume that the cost of each put co is priced so as to make the option actuarially
fair (i.e. E[X] = E[R]). This effectively sets a minimum price for ho kilograms of milk of
(so − co), whilst allowing the farmer to profit from any high-price realisations.

Since a put option skews the distribution of operating profits, variance is no longer a useful
metric to optimise. Instead, we reprise the AV@R risk measure. Given a quantile β and a put
option o, we can calculate the optimal number of put contracts to buy that minimises the average
value-at-risk by solving the following (linear) optimisation problem:

AV@R1−β[X] = min
ζ,ho,zω ,Xω

ζ + 1
β|Ω|

∑
ω∈Ω

zω

s.t. zω ≥ Xω − ζ, ∀ω ∈ Ω

zω ≥ 0, ∀ω ∈ Ω

Xω = −Rω − ho × (max{0, so − p53,ω} − co) , ∀ω ∈ Ω.

Note that we have negated the last constraint to turn profits into costs. This optimisation problem
can also be used to find the hedge ratio that minimises the average value-at-risk for any of the
other contracts described above by replacing the last constraint with the appropriate hedged
returns. For example, to calculate the quantity of milk price futures (Eq. 9.10) that minimise

12In contrast, an American option allows the buyer to exercise the option at any time before the settlement date.
See Brealy et al. [35, Ch. 20] for a good introduction and overview of option contracts.
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the average value-at-risk, we replace the last constraint with:

Xω = −Rω − hp(E ω [p53,ω]− p53,ω).

To investigate how a farmer might use options contracts, we solve the optimisation problem
above given a put option with a strike price of $6.0, the value-at-risk quantile β = 0.25, and Ω

chosen to be the set of 2000 replications of the Monte Carlo simulation of the risk-neutral policy.
In addition, we calculate the quantity of the milk futures contract hp that also minimised the
average value-at-risk when β = 0.25 using the same set of 2000 replications. The distributions
of the profit are plotted in Figure 9.18. Compared with the futures distribution, the options
distribution retains the right-hand tail at the expense of shifting the peak of the distribution
downwards. Ultimately, the decision of whether to manage price-risk using futures or options
contracts (if at all) is up to the personal choice of each farmer.
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Figure 9.18: Distribution in operating profit using milk price futures and options.

9.6 Summary

In this chapter we extended the POWDER model to incorporate an auto-regressive process for
price and the ability of the farmer to sell milk on a forward market. We have shown that risk-
averse farmers who do not forward sell their milk have little ability to manage their downside
risks as the majority of this risk is due to price volatility. In contrast, farmers who sell their milk
forward can greatly reduce the variance in their operating profit with little reduction in their
expected operating profit. We also investigated various types of weather derivatives, but these
were shown to offer limited benefit in comparison to hedging price.

Supplementary materials The Julia code to implement POWDER-II in SDDP.jl, as well
as the data needed to run the case study and replicate the results in this chapter, is available at
https://github.com/odow/MilkPOWDERII.

https://github.com/odow/MilkPOWDERII


Chapter 10

Conclusion

10.1 Main results and contributions

In Part II of this thesis we applied the methodology and toolset developed in Part I to problems
in the New Zealand dairy industry. We briefly summarise our main results and contributions.

• We developed MOO, a dynamic program which approximates a nonlinear simulation
model of a cow.

Dynamic programming allows us to obtain provably optimal solutions. This is in contrast
to similar models such as IDEA [64], which use nonlinear optimisation and may find
solutions that are sub-optimal.

• Using MOO, we demonstrated that the stocking rate of the farm investigated in the case
study was sub-optimal.

In particular, we identified that the farmer should either increase their intensity of supple-
mentation from 2.85 t/ha to 5 t/ha or decrease their stocking rate from 3 cows/ha to 2.75
cows/ha. The farmer has since lowered the stocking rate to 2.7 cows/ha which is close to
MOO’s recommendation.

• Using MOO, we demonstrated that purchasing a fixed quantity of supplement at the start
of the season can increase risk.

In our opinion, risk is an area that is under-explored in the literature as most authors only
consider deterministic models.

• We developed POWDER, a large multistage stochastic optimisation model of a pastoral
dairy farm.

POWDER reduces the gap in the literature identified by Borodin et al. [33], who noted
that there were few large, real-world applications of multistage stochastic optimisation in
an agricultural context.
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• Using POWDER, we demonstrated that the current stocking rate of the farm investigated
in the case study was sub-optimal.

We showed that reducing the stocking rate from 3 cows/ha to 2.7 cows/ha increased the
operating profit in every simulated scenario. This reinforces our findings from MOO.

• We developed two models for forecasting the Fonterra end-of-season milk price.

In addition to their use in POWDER-II, these models can also be used to value the NZX
(New Zealand Stock Exchange) milk price futures and options [149].

• We developed POWDER-II, an extension to POWDER with an improved model for price
uncertainty and integrated risk management.

POWDER-II further reduces the gap in the literature identified by Borodin et al. [33].
It also demonstrates that risk management tools can be successfully integrated into a
multistage stochastic optimisation model and solved to find an approximately optimal
policy.

• Using POWDER-II, we showed that for the farm investigated in the case study, the vari-
ation in operating profit due to price variation is much greater than the variation in oper-
ating profit due to weather variation.

This reinforces our view that the impact of price volatility on models of farm decision-
making is an area that is under-explored in the literature as most authors only consider
fixed milk prices.

• We demonstrated how milk price futures and options can improve the welfare of a risk-
averse farmer.

The large reduction in the variance of a farmer’s operating profit compared to the small
reduction in expected profit indicates that the NZX milk price futures and options are
valuable tools for New Zealand dairy farmers. Educating farmers about these tools, how
they work, and the benefits they provide, should be given high priority by the industry
in order to overcome the limited adoption of these tools that has been observed in other
dairy markets [207, 208].

• In contrast, we showed how weather derivatives are not able to improve the welfare of a
risk-averse farmer.

This is because derivatives that settle against actual pasture growth are impractical to
provide in practice due to the problems of adverse selection and moral hazard, while
simple index derivatives such as cumulative rainfall are limited by the basis risk that they
introduce.
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Summarised into a single finding, this half of the thesis suggests that price volatility plays a
major role in the decision-making and profitability of New Zealand dairy farmers. The current
literature has focused on improving profitability by increasing production and reducing operat-
ing costs. We suggest that this analysis is inadequate without consideration of the associated
variation in operating profit and downside risk.

10.2 Future work

Part II focused on applications in the New Zealand dairy industry. However, there is nothing in
our methodology that limits the work to pastoral dairy farms. In its simplest form, the POWDER
model comprises four models: weather, crop, animal, and price. In pastoral dairy farming, the
crop is grass and the animal is a cow. One could easily change the cow for a sheep, or remove
the animal model and change the crop model to wheat, soy, or rice. This greatly expands the
potential areas of application.

It is also interesting to consider this research in the context of climate change. Extreme
weather events are likely to become more frequent in the future and will increase risks and
uncertainties within the global food system [205]. In an article on the impact of food security
due to climate change in Science, Wheeler and von Braun [205] write:

[There is] the need for considerable investment in adaptation and mitigation ac-
tions to prevent the impacts of climate change from slowing progress in eradicat-
ing global hunger and under-nutrition. [....] Building agricultural resilience, or
‘climate-smart agriculture,’ through improvements in technology and management
systems is a key part of this.

In our opinion, multistage stochastic optimisation is well equipped to deal with this problem
of ‘climate-smart agriculture.’ We therefore suggest the following topics as avenues of future
research.

• Apply multistage stochastic optimisation to other agricultural systems.

• Extend the models to multi-year time horizons.

• Investigate the impact of climate volatility on optimal management policies.

• Explore optimal adaptation strategies. Should a given cropping farm grow solely wheat?
Or should it diversify into wheat and corn?

There are also a number of more specific directions relating to the models we developed in
this thesis.

• Evaluate MOO and POWDER on different farms.
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In Part II, we focused on a single farm in the Bay of Plenty of New Zealand. Using MOO
and POWDER, we were able to obtain insight into optimal management decisions for this
farm (e.g. we can increase operating profit by decreasing the stocking rate, and by selling
milk on the forward market we can reduce the variance in operating profit). It would be
interesting to apply the model to a range of farms in order to compare and contrast the
different optimal management policies.

• Improve the animal model in POWDER.

In order to solve the POWDER model using SDDP, we used a simplified model of a cow.
Compared to the detailed E-Cow model which proportions net energy into fat deposition
(i.e. change in body condition) and milk production, our simplified version assumes a
fixed body condition trajectory with any net energy apportioned to milk production. Work
could be done to investigate better convex approximations of a dairy cow.

• Allow the farmer to change the stocking rate during the season.

One limitation of POWDER is that the stocking rate is fixed. The ability to buy and sell
stock during the year is an additional management action that we have not considered in
this thesis.

• Investigate the benefit of a corporate ownership structure compared with a single owner-
operator.

If multiple farms are managed collectively do the optimal management actions change?
If the farms are in different geographical locations (i.e. experiencing different climatic
conditions), can stock be transferred between farms to manage risk?

• Incorporate emissions into the model.

The environmental impact of dairy farming is large. It would be interesting to incorporate
nitrogen leeching and methane emissions into the model, and then investigate the trade-
off between operating profit and the environmental impact.

• Solve POWDER-II using other risk measures.

Finally, we noted in Chapter 9 how the use of nested risk measures led to counter-intuitive
solutions: more risk-averse single period risk measures led to increased risk in the end-
of-horizon distribution in operating profit. It would be interesting to solve POWDER
using other risk measures such as expected conditional risk measures [110] and the end-
of-horizon risk measures of Baucke et al. [14].



Summary

The focus of this thesis has been decision making under uncertainty. In particular, we con-
sidered the problem of making an optimal sequence of decisions in time when the future is
uncertain. The thesis was split into two distinct parts. The first, Multistage Stochastic Optimi-

sation, addressed the theory and computation of multistage stochastic optimisation. The second,
Applications in the Dairy Industry, applied the theory and techniques developed in the first part
of the thesis to the problems faced by pastoral dairy farmers in New Zealand.

There are two main contributions from our work. First, our main contribution from Part I is
the SDDP.jl library for solving multistage stochastic optimisation problems using stochastic
dual dynamic programming. Second, although we developed a number of specific models for
the New Zealand dairy industry, our main contribution from Part II is to demonstrate that mul-
tistage stochastic optimisation models can be formulated and solved in an agricultural context.

Given the challenges facing the global community posed by climate change, a growing pop-
ulation, and an increasing awareness of the environmental impact of agriculture, the need to
farm smarter in the face of uncertainty has never been more pressing. This thesis provides
evidence that multistage stochastic optimisation is an ideal tool to help participants in the agri-
cultural sector make better decisions under uncertainty.
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Appendix A

DynamicProgramming.jl: a Julia package
for stochastic dynamic programming

In this appendix we detail DynamicProgramming.jl, an open-source software library we
have developed to solve multistage stochastic optimisation problems using backward recursion.
The library is written in the Julia programming language [28], and it has a similar interface to
SDDP.jl, which we introduced in Chapter 3. DynamicProgramming.jl takes advantage
of Julia’s in-built parallelism functionality to scale the solution of large models from the single
core of a laptop computer, to multiple cores of a single workstation, to multiple distributed
machines in a High-Performance-Computing cluster.

A.1 Introduction

A variety of methods exist for solving multistage stochastic optimisation problems. We intro-
duced one of these, stochastic dual dynamic programming, in Chapter 2. However, we noted
that the method requires a number of restrictive assumptions (notably, convexity of the cost-to-
go function with respect to the state variables). This limits the types of problems that SDDP can
solve. Another solution method is called backward recursion. In this method, the state, control,
and noise spaces are discretised. Then, in a recursive manner, traversing backward from the
leaf nodes of the policy graph to the root node, a complete enumeration is conducted to evaluate
the optimal control and cost-to-go from each state in the discretised state-space. We shall not
describe the algorithm in detail since it is well known in the literature. Readers are directed to
Bellman [23], Bellman and Dreyfus [24], Bertsekas [27], and Birge and Louveaux [31] for a
more thorough treatment.

Backward recursion is a simple method for solving multistage stochastic optimisation prob-
lems. However, it is computationally demanding since it performs a complete enumeration of
the discretised state- and control-spaces. This limits the method to problems with few state and
control variables. However, it does not require special assumptions like convexity, and so can
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be used to solve more general problems.

A.2 Example: the air conditioner problem

In this section we describe how to solve the air conditioner problem from Chapter 3 using
DynamicProgramming.jl. We recommend reading Chapter 3 about SDDP.jl, and in
particular, Section 3.2 (in which we describe how to solve the air conditioner problem using
SDDP.jl), before reading this section, since the syntax and modelling approach of the two
libraries are similar.

In the air conditioner problem, the manager of a factory seeks a production plan for produc-
ing air conditioners over a period of three months. During standard working hours, the factory
can produce 200 units per month at a cost of $100/unit. Unlimited overtime can be scheduled;
however, the cost increases to $300/unit during those hours. In the first month, there is a known
demand of 100 units. In each of months two and three, there is an equally likely demand of
either 100, or 300, units. Air conditioners can be stored between months at a cost of $50/unit,
and all demand must be met.

A.2.1 Formulating the problem

We can formulate the air conditioner problem as a multistage stochastic optimisation problem.
It has three stages – one for each month of operation. This can be represented by the linear
policy graph shown in Figure A.1.

Figure A.1: Policy graph of the air conditioner problem.

We now identify the states, controls, and noise terms in the model. There is one state variable
in the model: xt, the quantity of air conditioners in storage at the start of stage (i.e. month) t.
Since the policy graph is linear, xt can also be thought of as the quantity of air conditioners in
storage at the end of stage t−1. Therefore we have x′t = xt+1 for t = 1, 2, 3. There is one noise
in the model: ωt, the demand for air conditioners in month t. There are two control variables:
pt, the number of air conditioners produced during standard working hours during month t; and
ot, the number of air conditioners produced during overtime working hours during month t. We
can formulate each subproblem in the policy graph indexed by t = 1, 2, 3 as:

SPt : Vt(xt, ωt) = max
pt,ot,xt+1

100pt + 300ot + 50xt+1 + Eωt+1 [Vt+1(xt+1, ωt+1)]

s.t. xt + pt + ot − ωt = xt+1

0 ≤ pt ≤ 200

xt, xt+1, ot ≥ 0,
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where V4(·, ·) = 0. In each stage, ωt is independently sampled from a finite discrete distribution
so that:

ω1 =
{

100, with probability 1,

ωt =

100, with probability 0.5

300, with probability 0.5
for t = 2, 3.

The root node (t = 0) has the initial condition x1 = 0. Therefore, the full optimisation problem
faced by the factory manager is:

max E ω1 [V1(0, ω1)] . (A.1)

In the next section, we describe how to communicate the formulation of the subproblems
SPt to DynamicProgramming.jl.

A.2.2 Communicating the problem to the solver

First, we need to load the DynamicProgramming.jl package. Unlike SDDP.jl, we do
not need to load JuMP, or a MathProgBase solver such as Clp.

using DynamicProgramming

Next, we initialise the SDPModel object. This is very similar to the SDDPModel object in
SDDP.jl. However, it has fewer keywords and only supports linear policy graphs.

m = SDPModel(

stages = 3,

sense = :Min

) do sp, t

... subproblem definition ...

end

We now need to describe the states, controls, and noise terms. Compared with SDDP.jl,
which uses JuMP, DynamicProgramming.jl has its own syntax. There is one state in the
air conditioner problem: the number of units in storage at the start of stage t, which we denote
x. This state can be created in DynamicProgramming.jl as follows.

@states(sp, begin

x in [0, 100, 200, 300]

end)

Note that we need to specify how to discretise the domain of x. There can only be one @states
block in each subproblem. If there are multiple states, each state should be on a new line in the
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@states block. This design was chosen to make it difficult for users to add large numbers of
state variables since this will result in the “curse of dimensionality.”

There are two controls: p, the quantity of air conditioners to produce during normal oper-
ating hours; and o, the quantity of air conditioners to produce during overtime operating hours.
They can be created as follows.

@controls(sp, begin

p in [0, 100, 200]

o in [0, 100, 200, 300]

end)

Note that we define multiple controls in the same @controls block, with each control on a
new line. Like @states, there can only be one @controls block in each subproblem.

Finally, the demand for air conditioners is 100 in the first stage, and equally likely to be 100
or 300 in the subsequent stages. We denote the demand by d.

DEMAND = [ [100], [100, 300], [100, 300] ]

PROBABILITY = [ [1.0], [0.5, 0.5], [0.5, 0.5] ]

@noises(sp, begin

d in DiscreteDistribution(DEMAND[t], PROBABILITY[t])

end)

Like the controls and states, we can have multiple noise terms; however, these are sampled
independently in each stage.

Having defined the states, controls, and noise terms, we now need to define the transition
function Tt, the feasibility set Ut, and the stage-objective Ct. First, we describe how constraints
are added.

The constraint in the air conditioner problem is that we need to ensure that there are enough
air conditioners to meet demand. Therefore, there is a constraint:

xt + pt + ot >= dt.

This can be added to the subproblem sp as follows.

constraints!(sp) do state_in, control, noise

state_in[x] + control[p] + control[o] >= noise[d]

end

This construct uses the same Julia short-hand for anonymous functions that we use in the

SDPModel() do sp, t ... end constructor. It is equivalent to the following.
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function foo(state_in, control, noise)

state_in[x] + control[p] + control[o] >= noise[d]

end

constraints!(foo, sp)

The arguments to the function foo are: a vector containing values of the incoming state vari-
able, a vector containing values of the current control, and a vector containing values of the cur-
rent noise realisation. We index these vectors using the names that we defined in the @states,
@controls, and @noises macros. We can add multiple constraints by chaining Boolean
expressions together. However, the function foo must return a single Boolean indicating if the
control is feasible given the incoming state and realisation of the noise.

The transition function is more complicated. It takes four arguments: the outgoing state
variable, the incoming state variable, the control, and the noise. It should return the stage-
objective. Like the constraints function, we can index the state, control, and noise vectors using
the names that we defined in the @states, @controls, and @noises macros.

For the air conditioner problem, the transition function is:

xt+1 = xt + pt + ot − dt,

and the stage-objective is:
100pt + 300ot + 50xt+1.

We can express these in DynamicProgramming.jl as follows.

dynamics!(sp) do state_out, state_in, control, noise

state_out[x] = state_in[x] + control[p] + control[o] - noise[d]

return 100control[p] + 300control[o] + 50state_out[x]

end

A.2.3 Solving the problem

Unlike SDDP.jl, which only supports Hazard-Decision realisations for the noise, or the gen-
eric policy graph framework which permits a mixture of Hazard-Decision and Decision-Hazard
nodes, DynamicProgramming.jl supports three types of uncertainty realisation.

The first, WaitAndSee assumes that every node in the linear policy graph is Hazard-
Decision. Thus, we can solve the air conditioner model as follows.

solve(m, realisation=WaitAndSee)

The second, realisation=HereAndNow, assumes that every node in the linear policy
graph is Decision-Hazard. The third, realisation=ExpectedValue, solves a determin-
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istic problem using the expected value of the noise terms. (See Birge and Louveaux [31] for an
introduction to these concepts in Stochastic Programming.)

A.2.4 Understanding the solution

Like SDDP.jl, we can simulate the policy using identical syntax to SDDP.jl.

sims = simulate(m, 100, [:x, :p, :o, :d])

We can also query the cost-to-go from the start of stage 1 when the incoming state variable
x = 0 as follows:

getbound(m, 1, x=0)

This has the same optimal objective value of $62,500 as we found using SDDP.jl.

A.3 Correctness

We tested the correctness of the algorithm on a number of problems. These include the inventory
control problem of Bertsekas [27, Example 1.3.2], the air conditioner problem described above,
the river chain problem from Downward et al. [66], and the one- and two-state price process
widget producer examples from Chapter 4. In each case, we obtained the optimal solution. This
also helped to validate our implementation of the SDDP.jl package which we described in
Chapter 3.

A.4 Parallel scaling

Backward recursion is amenable to parallelisation. This is because, at each stage t, given an
approximation for the cost-to-go function Vt+1, the problem of evaluating the cost-to-go Vt(xt)
at each point xt in the discretised state-space is embarrassingly parallel [105].

To demonstrate the parallel scaling properties of DynamicProgramming.jl, we solved
the case study in Section 7.3, using a virtual machine with 20 Intel E5-2698 CPUs with 64GB
of memory, for different numbers of Julia processes. The results are plotted in Figure A.2. The
dashed grey line represents perfect scaling (i.e. TN = T1/N , where TN is the solution time with
N processes).

When one Julia process is used, the solution time is approximately 7060 seconds. When
two processes are used, we could expect that the solution time is approximately 3530 seconds
(i.e. 50% of the initial time). However, the actual solution time is 4250 seconds (≈ 60%). This
is because there is some initial overhead in order to set up the parallel solution algorithm. As
we increase the number of processes, the solution time scales linearly (on a log-log graph). This
demonstrates the efficiency of the parallel implementation.
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Figure A.2: Solution time against the number of processes, showing the actual (solid) and ideal
(dashed) scaling rates.

A.5 Conclusion

In this appendix we introduced DynamicProgramming.jl, a Julia library for solving mul-
tistage stochastic optimisation problems using backward recursion.

Supplementary materials Source-code and documentation are available as supplementary
materials at https://github.com/odow/DynamicProgramming.jl.

https://github.com/odow/DynamicProgramming.jl
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Appendix B

Addendum for Chapter 2

In this appendix we outline two bugs in the Gurobi Optimiser [99], a state-of-the-art commer-
cial mathematical programming solver that is used in a wide variety of industries and problem
settings. The two bugs discovered existed in all versions before version 7.0 of the Gurobi Opti-
miser.

We begin by examining a simple Linear Program (LP) with a number of unique characteris-
tics. Next, we walk-through a sequence of steps required to trigger the bugs. Lastly, we identify
the mechanism behind the observed behaviour and propose a simple fix that can prevent this
particular bug from occurring.

Let us consider the following linear program, which could be a first-stage Benders subprob-
lem:

min − θ

s.t. x + y ≥ 0

2x − y ≥ 0

θ ≥ −2

x − θ ≥ 0

−1.000001x + y − θ ≥ 0

x ∈ [0, 1] y ∈ [0,∞) θ ∈ (−∞, 1].

The optimal solution to this LP is (x, y, θ) = (1, 2, 0.99999) with the objective −0.99999. In
addition, the LP has a number of unique features that are worth discussing. The three features
are necessary, but not sufficient, to trigger the bug.

1. Both x and y are bounded below by 0. Therefore, the first constraint x + y ≥ 0 can only
be binding at (x, y, θ) = (0, 0, ·) and so is redundant.

2. When y = 2x (i.e. the second constraint is binding), the final two constraints become
almost co-linear (x ≥ θ and 0.99999x ≥ θ).

3. θ is finitely bounded above by 1 and not bounded below. However there exists an addi-
tional constraint that bounds θ below by −2.
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Computer codes

We now walk through a sequence of commands to solve the above model using the Python [171]
interface to the Gurobi Optimiser. However, we note that the bug is not limited to the Python
interface and can be triggered via any of the Gurobi APIs.

First, we initialise the model:

from gurobipy import *

m=Model()

m.modelSense = GRB.MINIMIZE

Next, we add the three variables with appropriate variable bounds:

x = m.addVar(lb=0, ub=1)

y = m.addVar(lb=0, ub=GRB.INFINITY)

theta = m.addVar(lb=-GRB.INFINITY, ub=1, obj=1)

m.update()

Third, we add the first four constraints and solve the model:

m.addConstr( x + y >= 0)

m.addConstr(2*x - y >= 0)

m.addConstr( theta >= -2)

m.addConstr( x - theta >= 0)

m.update()

m.optimize()

Gurobi correctly returns the solution status optimal with the solution (x, y, θ) = (1, 0, 1) and
objective value −1. We then add the new constraint and re-solve:

m.addConstr(-1.000001*x + y - theta >= 0)

m.update()

m.optimize()

Gurobi correctly returns the solution status optimal, the primal solution (x, y, θ) = (1, 2,
0.99999), and the objective value −0.99999. Now is the point at which we trigger the bug: we
query the objective vector and then reset the objective vector with the queried values:

c = m.getAttr("Obj", m.getVars())

m.setAttr("Obj", m.getVars(), c)
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Logic would dictate that these two lines should not change the underlying model in any way.
However, if we re-optimise the model (m.optimize()) we get a different solution. The status
is reported as optimal. The objective value is reported as −2 (not −1), and the solution is
reported as (x, y, θ) = (0, 0,−2). While the solution is feasible (but not optimal), the objective
value is incorrect. Our objective is min − θ which would imply an objective of +2 if θ took
the value −2 in the solution. Therefore, Gurobi has returned a sub-optimal solution with an
incorrect objective value, but reported the status optimal. We also note that although the
requirement to reset the objective vector may seem unusual, the modelling package JuMP [67]
performs this operation silently before every solve.

What went wrong?

After the first call to m.optimize(), Gurobi returned the correct solution. Then, a new
constraint was added and the model updated. If we print out the LP file of the problem (using
m.write("model.lp")), we get a representation of the model that is identical to what we
expect.

Next, we call m.optimize() and again print out the LP file of the problem. This time,
we obtain a different representation of the model compared to what we expect. It shows us that
Gurobi has reformulated its internal representation of the model. We call this the reformulated

problem as the model is now:

min + θ

s.t. x + y ≥ 0

2x − y ≥ 0

− θ ≥ −2

x + θ ≥ 0

−1.000001x + y + θ ≥ 0

x ∈ [0, 1] y ∈ [0,∞) θ ∈ [−1,∞).

The sign of the θ variable has been flipped, and the relevant coefficients in the objective and con-
straint matrix, as well as variable bounds have been flipped. This illustrates the first (harmless)
bug in the Gurobi Optimiser:

Bug 1: Gurobi prints the LP file of the internally reformulated model rather than the user
representation of the model.

When we query the objective coefficients, Gurobi correctly “undoes" the reformulation and
provides the correct objective vector [0, 0,−1]. Therefore, it is only possible to identify that this
reformulation has occurred due to the bug in the LP writer. Next, we attempt to set the objective
coefficients, triggering the more serious second bug:

Bug 2: When we call to set the objective coefficient vector, we set the vector in the refor-

mulated problem.
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Therefore, the model Gurobi now contains in memory is:

min − θ

s.t. x + y ≥ 0

2x − y ≥ 0

− θ ≥ −2

x + θ ≥ 0

−1.000001x + y + θ ≥ 0

x ∈ [0, 1] y ∈ [0,∞) θ ∈ [−1,∞).

This has the solution (x, y, θ) = (0, 0, 2) with the objective −2. However, when we query
the solution vector, it again “undoes" the reformulation and returns (x, y, θ) = (0, 0,−2).
Through personal correspondence with Gurobi and our personal experience, we believe this
bug is triggered by a reformulation heuristic that runs when a combination of three things oc-
cur:

1. a variable exists that is finitely bounded above but not below;
2. no internal scaling is applied to the problem by Gurobi; and
3. (nearly) co-linear constraints exist in the model.

These three necessary conditions are common to first-stage Benders subproblems. However,
to avoid this issue, one needs only to define a valid finite lower bound for every variable in a
model.
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Addendum for Chapter 3

This appendix contains the Julia code necessary to run the air conditioner example in Chapter
3.

Listing C.1: SDDP.jl code for the air conditioner example.
1 using JuMP, SDDP, Clp

2
3 m = SDDPModel(

4 stages = 3,

5 objective_bound = 0.0,

6 sense = :Min,

7 solver = ClpSolver()

8 ) do sp, t

9 @variables(sp, begin

10 0 <= p <= 200

11 o >= 0

12 s >= 0

13 end)

14 @state(sp, xtp1 >= 0, xt == 0)

15 @constraint(sp, xt + p + o - s == xtp1)

16 D = [ [100], [100, 300], [100, 300] ]

17 @rhsnoise(sp, w=D[t], s == w)

18 P = [ [1.0], [0.5, 0.5], [0.5, 0.5] ]

19 setnoiseprobability!(sp, P[t])

20 @stageobjective(sp, 100 * p + 300 * o + 50 * xtp1)

21 end

22
23 status = solve(m, max_iterations=10)

24 getbound(m) # should be 62,500

25
26 sims = simulate(m, 100, [:xtp1, :p, :o, :s])
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Appendix D

Addendum for Chapter 7

In this appendix, we present plots of the policies simulated in Section 7.4.2. Each figure contains
six subplots. The variables plotted are:

(a) the body condition score xbt ;
(b) the energy required for maintenance xet ;
(c) the quantity of milk solids produced;
(d) the pasture cover xgt ;
(e) the quantity of grass consumed per day; and
(f) the quantity uqt of palm kernel consumed per day.

In some subplots, the trajectory oscillates up and down between weeks (e.g. Figure D.3c). It is
likely that a smoother trajectory exists (e.g. gradually reducing the quantity of milk produced)
with an objective that is near optimal, if not equal in value to the optimal objective. This is
because, provided the end-of-horizon constraints are met (e.g. xb53 ≥ 3.2 and xg53 ≥ 2500),
there is little difference between feeding the cow 10 kg of grass today and 11 kg of grass
tomorrow, and the reverse.
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Figure D.1: Simulation of the “low intensity” policy: (xρ1, x
q
1) = (2.4, 0).
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Figure D.2: Simulation of the “medium intensity” policy: (xρ1, x
q
1) = (3.2, 6000).

50 100 150 200 250 300 350
0

1

2

3

4

5
(a)

Days of the Season

B
C

S
(u

ni
ts

)

50 100 150 200 250 300 350
50

60

70

80
(b)

Days of the Season

M
ai

nt
en

an
ce

(M
J/

co
w

/d
ay

)

50 100 150 200 250 300 350
0.0

0.5

1.0

1.5

2.0

2.5
(c)

Days of the Season

M
ilk

 S
ol

id
s

(k
g/

co
w

/d
ay

)

50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500
(d)

Days of the Season

Pa
st

ur
e 

C
ov

er
(k

g/
ha

)

50 100 150 200 250 300 350
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
(e)

Days of the Season

G
ra

ss
 C

on
su

m
pt

io
n

(k
g/

co
w

/d
ay

)

50 100 150 200 250 300 350
0

1

2

3

4

5

6
(f)

Days of the Season

Pa
lm

 K
er

ne
l C

on
su

m
pt

io
n

(k
g/

co
w

/d
ay

)

Figure D.3: Simulation of the “high intensity” policy: (xρ1, x
q
1) = (3.45, 7000).



Appendix E

Addendum for Chapter 8

In the following, we give the full formulation of the subproblem SPt,pt for stages t = 1, 2,
. . . , 52. However, compared to our description in Chapter 8, there are notable differences
to: the pasture cover transition constraint, the actual evapotranspiration constraint, and the Fat
Evaluation Index penalty. We elaborate on these differences below.

Pasture cover

First, recall the pasture cover transition constraint (Eq. 8.5):

Pt+1 = Pt + min

{
κt × et, 4

∆Pmax

Pmax

× Pt
(

1− Pt
Pmax

)}
− ht − fpt ,

where Pt is the pasture cover on the farm at the start of week t, κt is the soil fertility index in
week t, et is the actual evapotranspiration during week t, ∆Pmax is the maximum rate of grass
growth, Pmax is the maximum pasture cover, ht is the quantity of grass harvested in week t, and
fpt is the quantity of grass from pasture fed to the cows during week t.

As formulated, this constraint has a min(·, ·) function. Therefore, it cannot be directly
solved as an LP. To overcome this issue, we introduce a grass growth rate variable gt, and
bound it from above by two less-than constraints so that:

gt ≤ κt × et,

and
gt ≤ 7× 4∆Pmax

Pmax

× Pt
(

1− Pt
Pmax

)
.

Note the multiplication by 7 to convert between the daily and weekly growth rates. The pasture
cover transition constraint is now:

Pt+1 = Pt + gt − ht − fpt .

217



218 Appendix E. Addendum for Chapter 8

However, the second less-than constraint is a concave, quadratic function. Therefore, we
approximate it by the first-order Taylor series expansion:

gt ≤ g(P̄j) + g′(P̄j)× (Pt − P̄j),

where

g(P̄j) =
4∆Pmax

Pmax

× P̄j ×
(

1− P̄j
Pmax

)
,

and

g′(P̄j) =
4∆Pmax

Pmax

×
(

1− 2P̄j
Pmax

)
.

Note that the 4∆Pmax/Pmax term scales the growth rate so that g(Pmax/2) = ∆Pmax. The
approximated function is shown in Figure E.1.
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∆Pmax
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h
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Figure E.1: Logistic pasture growth function approximated by a set of linear constraints.

Actual evapotranspiration

Second, recall the actual evapotranspiration constraint Eq. 8.3:

et = min {ept , Wt + rt} ,

where et is the actual evapotranspiration, ept is the potential evapotranspiration during week t,
Wt is the soil moisture at the start of week t, and rt is the incident rainfall during week t.

Like the pasture cover constraint above, this also has a min function. As above, we replace
the min function by the two constraints:

et ≤ ept , and
et ≤ Wt + rt.

(E.1)
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The Fat Evaluation Index penalty

Third, we gave a graphical description of the Fat Evaluation Index penalty (which we reproduce
in Figure E.2), but we did not describe how this was implemented. Instead, we denoted the
penalty that was incurred by ∆q

t .
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Figure E.2: Fat Evaluation Index Penalty for differing levels of intake. Shaded vertical bands
represent different Fat Evaluation Index grades: A in green, B in orange, and C in red (D not
shown).

By design, the Fat Evaluation Index penalty function is piecewise-linear and convex with
respect to the quantity of supplement fed per cow per day. Therefore, we can approximate it
from below by a collection of linear constraints.

Before we detail the linear constraints, recall that we denote the stocking rate (cows/ha) by
ρ and the quantity of palm kernel to feed the herd each week by st. Therefore, the quantity that
we feed each cow each day is st/(7ρ).

We now detail the four segments of the piecewise linear penalty function and their corre-
sponding constraints:

1. between 0 and 3 kg/cow/day, the penalty is $0/kg/cow/day:

∆q
t ≥ 0;

2. between 3 and 4 kg/cow/day, the penalty increases at a rate of $0.25/kg/cow/day:

∆q
t ≥ (7ρ)× (0.00 + 0.25× (st/(7ρ)− 3));

3. between 4 and 5 kg/cow/day, the penalty increases at a rate of $0.50/kg/cow/day:

∆q
t ≥ (7ρ)× (0.25 + 0.50× (st/(7ρ)− 4)); and
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4. above 5 kg/cow/day, the penalty increases at a rate of $1.00/kg/cow/day:

∆q
t ≥ (7ρ)× (0.75 + 1.00× (st/(7ρ)− 5)).

The complete formulation

Incorporating the modifications above, the full formulation of the subproblem SPt,pt for stages
t = 1, 2, . . . , 52 is:

SPt,pt : Vt,pt(xt, e
p
t , rt) = max E

[
Vt+1,pt+1(xt+1, e

p
t+1, rt+1)

]︸ ︷︷ ︸
future profit

−
(
csst + chht + ciit + ∆q

t

)︸ ︷︷ ︸
week t cost

s.t.
State Transitions: Ct+1 = Ct − ut

Mt+1 = Mt + mt
ηmt

Pt+1 = Pt + gt − ht − fpt
Qt+1 = Qt + βht − f qt
Wt+1 ≤ W̄

Wt+1 ≤ Wt + rt − et + it

Evapotranspiration: et ≤ ept

et ≤ Wt + rt

Grass growth: gt ≤ κt × et
gt ≤ 7 [g(0) + g′(0)× (Pt − 0)]

gt ≤ 7 [g(500) + g′(500)× (Pt − 500)]
...
gt ≤ 7 [g(3500) + g′(3500)× (Pt − 3500)]

Energy balance: ηp × (fpt + f qt ) + ηs × st = Ct × εlac
t +

. . . (C̄ − Ct)× εdry
t +mt

νCt ≤ mt ≤ νtCt

Fat Evaluation Index Penalty: ∆q
t ≥ 0

∆q
t ≥ (7ρ)× (0.00 + 0.25× (st/(7ρ)− 3))

∆q
t ≥ (7ρ)× (0.25 + 0.50× (st/(7ρ)− 4))

∆q
t ≥ (7ρ)× (0.75 + 1.00× (st/(7ρ)− 5))

Non-negativity of states: Ct+1,Mt+1, Pt+1, Qt+1,Wt+1 ≥ 0

Non-negativity of controls: et, f
p
t , f

q
t , gt, ht, it, st, ut ≥ 0.
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Addendum for Chapter 9

Consider a random milk price pω ($/kg) for ω ∈ Ω, and denote the farmer’s unhedged return
in scenario ω by Rω. If a farmer contracts h kg at the expected price Eω[pω], then their hedged
return is:

Xω = Rω + h(E
ω

[pω]− pω).

In what follows, we show the hedge ratio h that minimises the variance of Xω is the Min-

imum Variance Hedge Ratio [26] of the total unhedged return R using the hedge instrument
p.

Theorem 2. The hedge ratio h that minimises the variance of Xω is cov(R, p)/var(p).

Proof. Consider choosing a hedge quantity h to minimise the variance of X:

min
h

{
E
ω

[X2
ω]− E

ω
[Xω]2.

}
(F.1)

The expectation of Xω is:

E
ω

[Xω] = Eω[Rω + h(Eω[pω]− pω)]

= Eω[Rω] + hEω[ω]− hEω[pω]

= Eω[Rω].

Expanding X2 we get:

X2 = (Rω + h(Eω[pω]− pω))2

= R2
ω + 2Rωh(Eω[pω]− pω) + h2(Eω[pω]− pω)2

= R2
ω + 2Eω[pω]Rωh− 2Rωpωh+ Eω[pω]2h2 − 2Eω[pω]pωh

2 + p2
ωh

2.

Taking the expectation of X2 we get:

E
ω

[X2] = Eω [R2
ω + 2Eω[pω]Rωh− 2Rωpωh+ Eω[pω]2h2 − 2Eω[pω]pωh

2 + p2
ωh

2]

= Eω[R2
ω] + 2Eω[pω]Eω[Rω]h− 2Eω[Rωpω]h− Eω[pω]2h2 + Eω[p2

ω]h2.
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Therefore Eq. F.1 is:

min
h

{
h2
(
E
ω

[p2
ω]− E

ω
[pω]2

)
+ 2h

(
E
ω

[pω]E
ω

[Rω]− E
ω

[Rωpω]
)

+ E
ω

[R2
ω]− (E

ω
[Rω])2

}
.

Differentiating w.r.t. h and setting to zero we get:

h
(
E
ω

[p2
ω]− E

ω
[pω]2

)
+
(
E
ω

[pω]E
ω

[Rω]− E
ω

[Rωpω]
)

= 0.

Re-arranging and using the identity var(a) = E[a2]− E[a]2, we get:

h =
Eω[Rωpω]− Eω[pω]Eω[Rω]

var(p)
.

By the identity cov(a, b) = E[ab]− E[a]E[b], we get:

h =
cov(R, p)

var(p)
.
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Cows, cows, everywhere.

Are calves sucking your fingers?

Calves, calves, everywhere.
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