Uncertainty in the objective function
This tutorial was generated using Literate.jl. Download the source as a .jl
file. Download the source as a .ipynb
file.
In the previous tutorial, An introduction to SDDP.jl, we created a stochastic hydro-thermal scheduling model. In this tutorial, we extend the problem by adding uncertainty to the fuel costs.
Previously, we assumed that the fuel cost was deterministic: $50/MWh in the first stage, $100/MWh in the second stage, and $150/MWh in the third stage. For this tutorial, we assume that in addition to these base costs, the actual fuel cost is correlated with the inflows.
Our new model for the uncertainty is given by the following table:
ω | 1 | 2 | 3 |
---|---|---|---|
P(ω) | 1/3 | 1/3 | 1/3 |
inflow | 0 | 50 | 100 |
fuel multiplier | 1.5 | 1.0 | 0.75 |
In stage t
, the objective is now to minimize:
fuel_multiplier * fuel_cost[t] * thermal_generation
Creating a model
To add an uncertain objective, we can simply call @stageobjective
from inside the SDDP.parameterize
function.
using SDDP, HiGHS
model = SDDP.LinearPolicyGraph(;
stages = 3,
sense = :Min,
lower_bound = 0.0,
optimizer = HiGHS.Optimizer,
) do subproblem, t
# Define the state variable.
@variable(subproblem, 0 <= volume <= 200, SDDP.State, initial_value = 200)
# Define the control variables.
@variables(subproblem, begin
thermal_generation >= 0
hydro_generation >= 0
hydro_spill >= 0
inflow
end)
# Define the constraints
@constraints(
subproblem,
begin
volume.out == volume.in + inflow - hydro_generation - hydro_spill
thermal_generation + hydro_generation == 150.0
end
)
fuel_cost = [50.0, 100.0, 150.0]
# Parameterize the subproblem.
Ω = [
(inflow = 0.0, fuel_multiplier = 1.5),
(inflow = 50.0, fuel_multiplier = 1.0),
(inflow = 100.0, fuel_multiplier = 0.75),
]
SDDP.parameterize(subproblem, Ω, [1 / 3, 1 / 3, 1 / 3]) do ω
JuMP.fix(inflow, ω.inflow)
@stageobjective(
subproblem,
ω.fuel_multiplier * fuel_cost[t] * thermal_generation
)
end
end
A policy graph with 3 nodes.
Node indices: 1, 2, 3
Training and simulating the policy
As in the previous two tutorials, we train and simulate the policy:
SDDP.train(model)
simulations = SDDP.simulate(model, 500)
objective_values =
[sum(stage[:stage_objective] for stage in sim) for sim in simulations]
using Statistics
μ = round(mean(objective_values); digits = 2)
ci = round(1.96 * std(objective_values) / sqrt(500); digits = 2)
println("Confidence interval: ", μ, " ± ", ci)
println("Lower bound: ", round(SDDP.calculate_bound(model); digits = 2))
-------------------------------------------------------------------
SDDP.jl (c) Oscar Dowson and contributors, 2017-24
-------------------------------------------------------------------
problem
nodes : 3
state variables : 1
scenarios : 2.70000e+01
existing cuts : false
options
solver : serial mode
risk measure : SDDP.Expectation()
sampling scheme : SDDP.InSampleMonteCarlo
subproblem structure
VariableRef : [7, 7]
AffExpr in MOI.EqualTo{Float64} : [2, 2]
VariableRef in MOI.EqualTo{Float64} : [1, 1]
VariableRef in MOI.GreaterThan{Float64} : [5, 5]
VariableRef in MOI.LessThan{Float64} : [1, 2]
numerical stability report
matrix range [1e+00, 1e+00]
objective range [1e+00, 2e+02]
bounds range [2e+02, 2e+02]
rhs range [2e+02, 2e+02]
-------------------------------------------------------------------
iteration simulation bound time (s) solves pid
-------------------------------------------------------------------
1 2.500000e+04 3.958333e+03 3.223181e-03 12 1
40 5.000000e+03 1.062500e+04 6.538320e-02 642 1
-------------------------------------------------------------------
status : simulation_stopping
total time (s) : 6.538320e-02
total solves : 642
best bound : 1.062500e+04
simulation ci : 1.051940e+04 ± 2.590829e+03
numeric issues : 0
-------------------------------------------------------------------
Confidence interval: 10733.75 ± 735.29
Lower bound: 10625.0