Infinite horizon hydro-thermal
This tutorial was generated using Literate.jl. Download the source as a .jl
file. Download the source as a .ipynb
file.
using SDDP, HiGHS, Test, Statistics
function infinite_hydro_thermal(; cut_type)
Ω = [
(inflow = 0.0, demand = 7.5),
(inflow = 5.0, demand = 5),
(inflow = 10.0, demand = 2.5),
]
graph = SDDP.Graph(
:root_node,
[:week],
[(:root_node => :week, 1.0), (:week => :week, 0.9)],
)
model = SDDP.PolicyGraph(
graph;
lower_bound = 0,
optimizer = HiGHS.Optimizer,
) do subproblem, node
@variable(
subproblem,
5.0 <= reservoir <= 15.0,
SDDP.State,
initial_value = 10.0
)
@variables(subproblem, begin
thermal_generation >= 0
hydro_generation >= 0
spill >= 0
inflow
demand
end)
@constraints(
subproblem,
begin
reservoir.out == reservoir.in - hydro_generation - spill + inflow
hydro_generation + thermal_generation == demand
end
)
@stageobjective(subproblem, 10 * spill + thermal_generation)
SDDP.parameterize(subproblem, Ω) do ω
JuMP.fix(inflow, ω.inflow)
return JuMP.fix(demand, ω.demand)
end
end
SDDP.train(
model;
cut_type = cut_type,
log_frequency = 100,
sampling_scheme = SDDP.InSampleMonteCarlo(; terminate_on_cycle = true),
parallel_scheme = SDDP.Serial(),
cycle_discretization_delta = 0.1,
)
@test SDDP.calculate_bound(model) ≈ 119.167 atol = 0.1
results = SDDP.simulate(model, 500)
objectives =
[sum(s[:stage_objective] for s in simulation) for simulation in results]
sample_mean = round(Statistics.mean(objectives); digits = 2)
sample_ci = round(1.96 * Statistics.std(objectives) / sqrt(500); digits = 2)
println("Confidence_interval = $(sample_mean) ± $(sample_ci)")
@test sample_mean - sample_ci <= 119.167 <= sample_mean + sample_ci
return
end
infinite_hydro_thermal(; cut_type = SDDP.SINGLE_CUT)
infinite_hydro_thermal(; cut_type = SDDP.MULTI_CUT)
-------------------------------------------------------------------
SDDP.jl (c) Oscar Dowson and contributors, 2017-24
-------------------------------------------------------------------
problem
nodes : 1
state variables : 1
scenarios : Inf
existing cuts : false
options
solver : serial mode
risk measure : SDDP.Expectation()
sampling scheme : SDDP.InSampleMonteCarlo
subproblem structure
VariableRef : [8, 8]
AffExpr in MOI.EqualTo{Float64} : [2, 2]
VariableRef in MOI.EqualTo{Float64} : [2, 2]
VariableRef in MOI.GreaterThan{Float64} : [5, 5]
VariableRef in MOI.LessThan{Float64} : [1, 1]
numerical stability report
matrix range [1e+00, 1e+00]
objective range [1e+00, 1e+01]
bounds range [5e+00, 2e+01]
rhs range [0e+00, 0e+00]
-------------------------------------------------------------------
iteration simulation bound time (s) solves pid
-------------------------------------------------------------------
100 2.500000e+01 1.188965e+02 7.750609e-01 1946 1
200 2.500000e+01 1.191634e+02 9.696369e-01 3920 1
300 0.000000e+00 1.191666e+02 1.170594e+00 5902 1
330 2.500000e+01 1.191667e+02 1.210643e+00 6224 1
-------------------------------------------------------------------
status : simulation_stopping
total time (s) : 1.210643e+00
total solves : 6224
best bound : 1.191667e+02
simulation ci : 2.158333e+01 ± 3.290252e+00
numeric issues : 0
-------------------------------------------------------------------
Confidence_interval = 120.33 ± 12.06
-------------------------------------------------------------------
SDDP.jl (c) Oscar Dowson and contributors, 2017-24
-------------------------------------------------------------------
problem
nodes : 1
state variables : 1
scenarios : Inf
existing cuts : false
options
solver : serial mode
risk measure : SDDP.Expectation()
sampling scheme : SDDP.InSampleMonteCarlo
subproblem structure
VariableRef : [8, 8]
AffExpr in MOI.EqualTo{Float64} : [2, 2]
VariableRef in MOI.EqualTo{Float64} : [2, 2]
VariableRef in MOI.GreaterThan{Float64} : [5, 5]
VariableRef in MOI.LessThan{Float64} : [1, 1]
numerical stability report
matrix range [1e+00, 1e+00]
objective range [1e+00, 1e+01]
bounds range [5e+00, 2e+01]
rhs range [0e+00, 0e+00]
-------------------------------------------------------------------
iteration simulation bound time (s) solves pid
-------------------------------------------------------------------
100 0.000000e+00 1.191285e+02 3.215079e-01 2874 1
200 2.500000e+00 1.191666e+02 5.461590e-01 4855 1
282 7.500000e+00 1.191667e+02 6.793261e-01 5733 1
-------------------------------------------------------------------
status : simulation_stopping
total time (s) : 6.793261e-01
total solves : 5733
best bound : 1.191667e+02
simulation ci : 2.104610e+01 ± 3.492245e+00
numeric issues : 0
-------------------------------------------------------------------
Confidence_interval = 116.06 ± 13.65