Newsvendor

This tutorial was generated using Literate.jl. Download the source as a .jl file. Download the source as a .ipynb file.

This example is based on the classical newsvendor problem, but features an AR(1) spot-price.

   V(x[t-1], ω[t]) =         max p[t] × u[t]
                      subject to x[t] = x[t-1] - u[t] + ω[t]
                                 u[t] ∈ [0, 1]
                                 x[t] ≥ 0
                                 p[t] = p[t-1] + ϕ[t]

The initial conditions are

x[0] = 2.0
p[0] = 1.5
ω[t] ~ {0, 0.05, 0.10, ..., 0.45, 0.5} with uniform probability.
ϕ[t] ~ {-0.25, -0.125, 0.125, 0.25} with uniform probability.
using SDDP, HiGHS, Statistics, Test

function joint_distribution(; kwargs...)
    names = tuple([first(kw) for kw in kwargs]...)
    values = tuple([last(kw) for kw in kwargs]...)
    output_type = NamedTuple{names,Tuple{eltype.(values)...}}
    distribution = map(output_type, Base.product(values...))
    return distribution[:]
end

function newsvendor_example(; cut_type)
    model = SDDP.PolicyGraph(
        SDDP.LinearGraph(3);
        sense = :Max,
        upper_bound = 50.0,
        optimizer = HiGHS.Optimizer,
    ) do subproblem, stage
        @variables(subproblem, begin
            x >= 0, (SDDP.State, initial_value = 2)
            0 <= u <= 1
            w
        end)
        @constraint(subproblem, x.out == x.in - u + w)
        SDDP.add_objective_state(
            subproblem;
            initial_value = 1.5,
            lower_bound = 0.75,
            upper_bound = 2.25,
            lipschitz = 100.0,
        ) do y, ω
            return y + ω.price_noise
        end
        noise_terms = joint_distribution(;
            demand = 0:0.05:0.5,
            price_noise = [-0.25, -0.125, 0.125, 0.25],
        )
        SDDP.parameterize(subproblem, noise_terms) do ω
            JuMP.fix(w, ω.demand)
            price = SDDP.objective_state(subproblem)
            @stageobjective(subproblem, price * u)
        end
    end
    SDDP.train(
        model;
        log_frequency = 10,
        time_limit = 20.0,
        cut_type = cut_type,
    )
    @test SDDP.calculate_bound(model) ≈ 4.04 atol = 0.05
    results = SDDP.simulate(model, 500)
    objectives =
        [sum(s[:stage_objective] for s in simulation) for simulation in results]
    @test round(Statistics.mean(objectives); digits = 2) ≈ 4.04 atol = 0.1
    return
end

newsvendor_example(; cut_type = SDDP.SINGLE_CUT)
newsvendor_example(; cut_type = SDDP.MULTI_CUT)
-------------------------------------------------------------------
         SDDP.jl (c) Oscar Dowson and contributors, 2017-25
-------------------------------------------------------------------
problem
  nodes           : 3
  state variables : 1
  scenarios       : 8.51840e+04
  existing cuts   : false
options
  solver          : serial mode
  risk measure    : SDDP.Expectation()
  sampling scheme : SDDP.InSampleMonteCarlo
subproblem structure
  VariableRef                             : [6, 6]
  AffExpr in MOI.EqualTo{Float64}         : [1, 3]
  AffExpr in MOI.LessThan{Float64}        : [2, 2]
  VariableRef in MOI.EqualTo{Float64}     : [1, 1]
  VariableRef in MOI.GreaterThan{Float64} : [3, 4]
  VariableRef in MOI.LessThan{Float64}    : [3, 3]
numerical stability report
  matrix range     [8e-01, 2e+00]
  objective range  [1e+00, 2e+00]
  bounds range     [1e+00, 1e+02]
  rhs range        [5e+01, 5e+01]
-------------------------------------------------------------------
 iteration    simulation      bound        time (s)     solves  pid
-------------------------------------------------------------------
        10   5.250000e+00  4.888859e+00  1.732149e-01      1350   1
        20   4.350000e+00  4.105855e+00  2.572899e-01      2700   1
        30   5.000000e+00  4.100490e+00  3.516910e-01      4050   1
        40   3.500000e+00  4.097376e+00  4.558959e-01      5400   1
        50   5.250000e+00  4.095859e+00  5.636179e-01      6750   1
        60   3.643750e+00  4.093342e+00  6.763580e-01      8100   1
        70   2.643750e+00  4.091818e+00  7.934289e-01      9450   1
        80   5.087500e+00  4.091591e+00  9.104490e-01     10800   1
        90   5.062500e+00  4.091309e+00  1.031332e+00     12150   1
       100   4.843750e+00  4.087004e+00  1.160907e+00     13500   1
       110   3.437500e+00  4.086094e+00  1.288838e+00     14850   1
       120   3.375000e+00  4.085926e+00  1.416240e+00     16200   1
       130   5.025000e+00  4.085866e+00  1.543911e+00     17550   1
       140   5.000000e+00  4.085734e+00  1.674382e+00     18900   1
       150   3.500000e+00  4.085655e+00  2.455987e+00     20250   1
       160   4.281250e+00  4.085454e+00  2.593198e+00     21600   1
       170   4.562500e+00  4.085425e+00  2.733829e+00     22950   1
       180   5.768750e+00  4.085425e+00  2.876622e+00     24300   1
       190   3.468750e+00  4.085359e+00  3.023514e+00     25650   1
       200   4.131250e+00  4.085225e+00  3.168251e+00     27000   1
       210   4.512500e+00  4.085157e+00  3.311082e+00     28350   1
       220   4.900000e+00  4.085153e+00  3.479896e+00     29700   1
       230   4.025000e+00  4.085134e+00  3.629535e+00     31050   1
       240   4.468750e+00  4.085116e+00  3.784939e+00     32400   1
       250   4.062500e+00  4.085075e+00  3.937583e+00     33750   1
       260   4.875000e+00  4.085037e+00  4.089183e+00     35100   1
       270   3.850000e+00  4.085011e+00  4.240445e+00     36450   1
       280   4.912500e+00  4.084992e+00  4.391775e+00     37800   1
       290   2.987500e+00  4.084986e+00  4.548444e+00     39150   1
       300   3.825000e+00  4.084957e+00  4.706243e+00     40500   1
       310   3.250000e+00  4.084911e+00  4.863802e+00     41850   1
       320   3.600000e+00  4.084896e+00  5.021548e+00     43200   1
       330   3.925000e+00  4.084896e+00  5.164448e+00     44550   1
       340   4.500000e+00  4.084893e+00  5.315640e+00     45900   1
       350   5.000000e+00  4.084891e+00  5.470146e+00     47250   1
       360   3.075000e+00  4.084866e+00  5.628605e+00     48600   1
       370   3.500000e+00  4.084861e+00  5.795803e+00     49950   1
       380   3.356250e+00  4.084857e+00  5.966485e+00     51300   1
       390   5.500000e+00  4.084846e+00  6.141659e+00     52650   1
       400   4.475000e+00  4.084846e+00  6.304999e+00     54000   1
       410   3.750000e+00  4.084843e+00  6.471506e+00     55350   1
       420   3.687500e+00  4.084843e+00  6.640779e+00     56700   1
       430   4.337500e+00  4.084825e+00  6.813938e+00     58050   1
       440   5.750000e+00  4.084825e+00  6.971690e+00     59400   1
       450   4.925000e+00  4.084792e+00  7.149813e+00     60750   1
       460   3.600000e+00  4.084792e+00  7.327290e+00     62100   1
       470   4.387500e+00  4.084792e+00  7.498527e+00     63450   1
       480   4.000000e+00  4.084792e+00  7.673506e+00     64800   1
       490   2.975000e+00  4.084788e+00  7.841346e+00     66150   1
       500   3.125000e+00  4.084788e+00  8.017006e+00     67500   1
       510   4.250000e+00  4.084788e+00  8.199334e+00     68850   1
       520   4.512500e+00  4.084786e+00  8.360640e+00     70200   1
       530   3.875000e+00  4.084786e+00  8.531210e+00     71550   1
       540   4.387500e+00  4.084781e+00  8.699318e+00     72900   1
       550   5.281250e+00  4.084780e+00  8.867112e+00     74250   1
       560   4.650000e+00  4.084780e+00  9.022250e+00     75600   1
       570   3.062500e+00  4.084780e+00  9.244587e+00     76950   1
       580   3.187500e+00  4.084780e+00  9.404139e+00     78300   1
       590   3.812500e+00  4.084780e+00  9.559140e+00     79650   1
       600   3.637500e+00  4.084774e+00  9.720016e+00     81000   1
       610   3.950000e+00  4.084765e+00  9.880766e+00     82350   1
       620   4.625000e+00  4.084760e+00  1.004443e+01     83700   1
       630   4.218750e+00  4.084760e+00  1.021245e+01     85050   1
       640   3.025000e+00  4.084755e+00  1.037245e+01     86400   1
       650   2.993750e+00  4.084751e+00  1.052587e+01     87750   1
       660   3.262500e+00  4.084746e+00  1.068411e+01     89100   1
       670   3.625000e+00  4.084746e+00  1.084822e+01     90450   1
       680   2.981250e+00  4.084746e+00  1.101349e+01     91800   1
       690   4.187500e+00  4.084746e+00  1.118026e+01     93150   1
       700   4.500000e+00  4.084746e+00  1.134206e+01     94500   1
       710   3.225000e+00  4.084746e+00  1.150481e+01     95850   1
       720   4.375000e+00  4.084746e+00  1.166750e+01     97200   1
       730   2.650000e+00  4.084746e+00  1.183462e+01     98550   1
       740   3.250000e+00  4.084746e+00  1.200838e+01     99900   1
       750   4.725000e+00  4.084746e+00  1.218580e+01    101250   1
       760   3.375000e+00  4.084746e+00  1.236625e+01    102600   1
       770   5.375000e+00  4.084746e+00  1.253199e+01    103950   1
       780   4.068750e+00  4.084746e+00  1.270222e+01    105300   1
       790   4.412500e+00  4.084746e+00  1.287787e+01    106650   1
       800   4.350000e+00  4.084746e+00  1.305103e+01    108000   1
       810   5.887500e+00  4.084746e+00  1.322882e+01    109350   1
       820   4.912500e+00  4.084746e+00  1.339469e+01    110700   1
       830   4.387500e+00  4.084746e+00  1.355527e+01    112050   1
       840   3.675000e+00  4.084746e+00  1.372593e+01    113400   1
       850   5.375000e+00  4.084746e+00  1.388960e+01    114750   1
       860   3.562500e+00  4.084746e+00  1.406296e+01    116100   1
       870   3.075000e+00  4.084746e+00  1.424049e+01    117450   1
       880   3.625000e+00  4.084746e+00  1.440535e+01    118800   1
       890   2.937500e+00  4.084746e+00  1.460566e+01    120150   1
       900   4.450000e+00  4.084746e+00  1.478164e+01    121500   1
       910   4.200000e+00  4.084746e+00  1.495256e+01    122850   1
       920   3.687500e+00  4.084746e+00  1.513346e+01    124200   1
       930   4.725000e+00  4.084746e+00  1.532709e+01    125550   1
       940   4.018750e+00  4.084746e+00  1.551106e+01    126900   1
       950   4.675000e+00  4.084746e+00  1.568160e+01    128250   1
       960   3.375000e+00  4.084746e+00  1.584815e+01    129600   1
       970   3.812500e+00  4.084746e+00  1.601742e+01    130950   1
       980   3.112500e+00  4.084746e+00  1.618635e+01    132300   1
       990   3.600000e+00  4.084746e+00  1.636694e+01    133650   1
      1000   5.500000e+00  4.084746e+00  1.654035e+01    135000   1
      1010   3.187500e+00  4.084746e+00  1.670855e+01    136350   1
      1020   4.900000e+00  4.084746e+00  1.687946e+01    137700   1
      1030   3.637500e+00  4.084746e+00  1.706121e+01    139050   1
      1040   3.975000e+00  4.084746e+00  1.723549e+01    140400   1
      1050   4.750000e+00  4.084746e+00  1.741774e+01    141750   1
      1060   4.437500e+00  4.084746e+00  1.761028e+01    143100   1
      1070   5.000000e+00  4.084746e+00  1.779076e+01    144450   1
      1080   4.143750e+00  4.084746e+00  1.797103e+01    145800   1
      1090   5.625000e+00  4.084746e+00  1.816001e+01    147150   1
      1100   3.475000e+00  4.084746e+00  1.834858e+01    148500   1
      1110   4.156250e+00  4.084746e+00  1.855425e+01    149850   1
      1120   4.450000e+00  4.084746e+00  1.875340e+01    151200   1
      1130   3.312500e+00  4.084741e+00  1.899614e+01    152550   1
      1140   5.375000e+00  4.084741e+00  1.917336e+01    153900   1
      1150   4.800000e+00  4.084737e+00  1.937641e+01    155250   1
      1160   3.300000e+00  4.084737e+00  1.956693e+01    156600   1
      1170   4.356250e+00  4.084737e+00  1.975569e+01    157950   1
      1180   3.900000e+00  4.084737e+00  1.994671e+01    159300   1
      1183   4.500000e+00  4.084737e+00  2.000311e+01    159705   1
-------------------------------------------------------------------
status         : time_limit
total time (s) : 2.000311e+01
total solves   : 159705
best bound     :  4.084737e+00
simulation ci  :  4.068572e+00 ± 4.136588e-02
numeric issues : 0
-------------------------------------------------------------------

-------------------------------------------------------------------
         SDDP.jl (c) Oscar Dowson and contributors, 2017-25
-------------------------------------------------------------------
problem
  nodes           : 3
  state variables : 1
  scenarios       : 8.51840e+04
  existing cuts   : false
options
  solver          : serial mode
  risk measure    : SDDP.Expectation()
  sampling scheme : SDDP.InSampleMonteCarlo
subproblem structure
  VariableRef                             : [6, 6]
  AffExpr in MOI.EqualTo{Float64}         : [1, 3]
  AffExpr in MOI.LessThan{Float64}        : [2, 2]
  VariableRef in MOI.EqualTo{Float64}     : [1, 1]
  VariableRef in MOI.GreaterThan{Float64} : [3, 4]
  VariableRef in MOI.LessThan{Float64}    : [3, 3]
numerical stability report
  matrix range     [8e-01, 2e+00]
  objective range  [1e+00, 2e+00]
  bounds range     [1e+00, 1e+02]
  rhs range        [5e+01, 5e+01]
-------------------------------------------------------------------
 iteration    simulation      bound        time (s)     solves  pid
-------------------------------------------------------------------
        10   3.250000e+00  4.340924e+00  2.194901e-01      1350   1
        20   3.731250e+00  4.045044e+00  5.835941e-01      2700   1
        30   4.475000e+00  4.043758e+00  1.084219e+00      4050   1
        40   4.225000e+00  4.041945e+00  1.731135e+00      5400   1
        50   4.225000e+00  4.041718e+00  2.519077e+00      6750   1
        60   5.250000e+00  4.041564e+00  3.462553e+00      8100   1
        70   5.625000e+00  4.040126e+00  4.481339e+00      9450   1
        80   4.800000e+00  4.040050e+00  5.633036e+00     10800   1
        90   2.981250e+00  4.039119e+00  6.866090e+00     12150   1
       100   4.875000e+00  4.038964e+00  8.218955e+00     13500   1
       110   4.200000e+00  4.038832e+00  9.773269e+00     14850   1
       120   3.625000e+00  4.038832e+00  1.137935e+01     16200   1
       130   5.168750e+00  4.038829e+00  1.309770e+01     17550   1
       140   4.725000e+00  4.038779e+00  1.491228e+01     18900   1
       150   4.275000e+00  4.038779e+00  1.683202e+01     20250   1
       160   5.156250e+00  4.038773e+00  1.899586e+01     21600   1
       166   3.606250e+00  4.038773e+00  2.023039e+01     22410   1
-------------------------------------------------------------------
status         : time_limit
total time (s) : 2.023039e+01
total solves   : 22410
best bound     :  4.038773e+00
simulation ci  :  4.087462e+00 ± 1.151118e-01
numeric issues : 0
-------------------------------------------------------------------